Integrable Floquet systems related to logarithmic conformal field theory
Vsevolod I. Yashin, Denis V. Kurlov, Aleksey K. Fedorov, Vladimir Gritsev
SciPost Phys. 14, 084 (2023) · published 26 April 2023
- doi: 10.21468/SciPostPhys.14.4.084
- Submissions/Reports
Abstract
We study an integrable Floquet quantum system related to lattice statistical systems in the universality class of dense polymers. These systems are described by a particular non-unitary representation of the Temperley-Lieb algebra. We find a simple Lie algebra structure for the elements of Temperley-Lieb algebra which are invariant under shift by two lattice sites, and show how the local Floquet conserved charges and the Floquet Hamiltonian are expressed in terms of this algebra. The system has a phase transition between local and non-local phases of the Floquet Hamiltonian. We provide a strong indication that in the scaling limit this non-equilibrium system is described by the logarithmic conformal field theory.
Cited by 3
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 Vsevolod I. Yashin,
- 2 3 Denis V. Kurlov,
- 2 3 Aleksey K. Fedorov,
- 2 4 Vladimir Gritsev
- 1 Математический институт им. В. А. Стеклова / Steklov Mathematical Institute
- 2 Международный центр квантовой оптики и квантовых технологий / Russian Quantum Center
- 3 Национальный исследовательский технологический университет МИСиС / Moscow Institute of Steel and Alloys State Technological University [MISIS]
- 4 Universiteit van Amsterdam / University of Amsterdam [UvA]
- Ministerie van Onderwijs, Cultuur en Wetenschap / Ministry of Education Culture and Science [OCW]
- Ministry of Science and Higher Education of the Russian Federation
- National University of Science and Technology
- Nederlandse Organisatie voor Wetenschappelijk Onderzoek / Netherlands Organisation for Scientific Research [NWO]
- Russian Science Foundation