SciPost logo

Anomaly of $(2+1)$-dimensional symmetry-enriched topological order from $(3+1)$-dimensional topological quantum field theory

Weicheng Ye, Liujun Zou

SciPost Phys. 15, 004 (2023) · published 10 July 2023


Symmetry acting on a (2+1)$D$ topological order can be anomalous in the sense that they possess an obstruction to being realized as a purely (2+1)$D$ on-site symmetry. In this paper, we develop a (3+1)$D$ topological quantum field theory to calculate the anomaly indicators of a (2+1)$D$ topological order with a general symmetry group $G$, which may be discrete or continuous, Abelian or non-Abelian, contain anti-unitary elements or not, and permute anyons or not. These anomaly indicators are partition functions of the (3+1)$D$ topological quantum field theory on a specific manifold equipped with some $G$-bundle, and they are expressed using the data characterizing the topological order and the symmetry actions. Our framework is applied to derive the anomaly indicators for various symmetry groups, including $\mathbb{Z}_2\times\mathbb{Z}_2$, $\mathbb{Z}_2^T\times\mathbb{Z}_2^T$, $SO(N)$, $O(N)^T$, $SO(N)\times \mathbb{Z}_2^T$, etc, where $\mathbb{Z}_2$ and $\mathbb{Z}_2^T$ denote a unitary and anti-unitary order-2 group, respectively, and $O(N)^T$ denotes a symmetry group $O(N)$ such that elements in $O(N)$ with determinant $-1$ are anti-unitary. In particular, we demonstrate that some anomaly of $O(N)^T$ and $SO(N)\times \mathbb{Z}_2^T$ exhibit symmetry-enforced gaplessness, i.e., they cannot be realized by any symmetry-enriched topological order. As a byproduct, for $SO(N)$ symmetric topological orders, we derive their $SO(N)$ Hall conductance.

Authors / Affiliations: mappings to Contributors and Organizations

See all Organizations.
Funders for the research work leading to this publication