Thermal pure matrix product state in two dimensions: Tracking thermal equilibrium from paramagnet down to the Kitaev honeycomb spin liquid state
Matthias Gohlke, Atsushi Iwaki, Chisa Hotta
SciPost Phys. 15, 206 (2023) · published 24 November 2023
- doi: 10.21468/SciPostPhys.15.5.206
- Submissions/Reports
Abstract
We present the first successful application of the matrix product state (MPS) representing a thermal quantum pure state (TPQ) in equilibrium in two spatial dimensions over almost the entire temperature range. We use the Kitaev honeycomb model as a prominent example hosting a quantum spin liquid (QSL) ground state to target the two specific-heat peaks previously solved nearly exactly using the free Majorana fermionic description. Starting from the high-temperature random state, our TPQ-MPS framework on a cylinder precisely reproduces these peaks, showing that the quantum many-body description based on spins can still capture the emergent itinerant Majorana fermions in a ${\mathbb Z}_2$ gauge field. The truncation process efficiently discards the high-energy states, eventually reaching the long-range entangled topological state approaching the exact ground state for a given finite size cluster. An advantage of TPQ-MPS over exact diagonalization or purification-based methods is its lowered numerical cost coming from a reduced effective Hilbert space even at finite temperature.
Cited by 1
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 Matthias Gohlke,
- 2 Atsushi Iwaki,
- 2 Chisa Hotta
- 1 沖縄科学技術大学院大学 / Okinawa Institute of Science and Technology [OIST]
- 2 東京大学 / University of Tokyo [UT]