Precision-machine learning for the matrix element method
Theo Heimel, Nathan Huetsch, Ramon Winterhalder, Tilman Plehn, Anja Butter
SciPost Phys. 17, 129 (2024) · published 8 November 2024
- doi: 10.21468/SciPostPhys.17.5.129
- Submissions/Reports
Abstract
The matrix element method is the LHC inference method of choice for limited statistics. We present a dedicated machine learning framework, based on efficient phase-space integration, a learned acceptance and transfer function. It is based on a choice of INN and diffusion networks, and a transformer to solve jet combinatorics. We showcase this setup for the CP-phase of the top Yukawa coupling in associated Higgs and single-top production.
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 Theo Heimel,
- 1 Nathan Huetsch,
- 2 Ramon Winterhalder,
- 1 Tilman Plehn,
- 1 3 4 5 6 7 Anja Butter
- 1 Ruprecht-Karls-Universität Heidelberg / Heidelberg University
- 2 Université catholique de Louvain [UCL]
- 3 Sorbonne Université / Sorbonne University
- 4 Centre National de la Recherche Scientifique / French National Centre for Scientific Research [CNRS]
- 5 Institut National de Physique Nucléaire et de Physique des Particules [IN2P3]
- 6 Université de Paris / University of Paris
- 7 Laboratoire de Physique Nucléaire et de Hautes Énergies / Laboratoire de Physique Nucléaire et de Hautes Énergies [LPNHE]
Funders for the research work leading to this publication
- Baden-Württemberg Stiftung
- Bundesministerium für Bildung und Forschung / Federal Ministry of Education and Research [BMBF]
- Carl-Zeiss-Stiftung / Carl Zeiss Foundation
- Deutsche Forschungsgemeinschaft / German Research FoundationDeutsche Forschungsgemeinschaft [DFG]
- Fonds De La Recherche Scientifique - FNRS (FNRS) (through Organization: Fonds National de la Recherche Scientifique [FNRS])