SciPost logo

Many-body perturbation theory for strongly correlated effective Hamiltonians using effective field theory methods

Raphaël Photopoulos, Antoine Boulet

SciPost Phys. 18, 003 (2025) · published 6 January 2025

Abstract

Introducing low-energy effective Hamiltonians is usual to grasp most correlations in quantum many-body problems. For instance, such effective Hamiltonians can be treated at the mean-field level to reproduce some physical properties of interest. Employing effective Hamiltonians that contain many-body correlations renders the use of perturbative many-body techniques difficult because of the overcounting of correlations. In this work, we develop a strategy to apply an extension of the many-body perturbation theory starting from an effective interaction that contains correlations beyond the mean-field level. The goal is to re-organize the many-body calculation to avoid the overcounting of correlations originating from the introduction of correlated effective Hamiltonians in the description. For this purpose, we generalize the formulation of the Rayleigh-Schrödinger perturbation theory by including free parameters adjusted to reproduce the appropriate limits. In particular, the expansion in the bare weak-coupling regime and the strong-coupling limit serves as a valuable input to fix the value of the free parameters appearing in the resulting expression. This method avoids double counting of correlations using beyond-mean-field strategies for the description of many-body systems. The ground state energy of various systems relevant for ultracold atomic, nuclear, and condensed matter physics is reproduced qualitatively beyond the domain of validity of the standard many-body perturbation theory. Finally, our method suggests interpreting the formal results obtained as an effective field theory using the proposed reorganization of the many-body calculation. The results, like ground state energies, are improved systematically by considering higher orders in the extended many-body perturbation theory while maintaining a straightforward polynomial expansion.


Authors / Affiliations: mappings to Contributors and Organizations

See all Organizations.