Generative unfolding with distribution mapping
Anja Butter, Sascha Diefenbacher, Nathan Huetsch, Vinicius Mikuni, Benjamin Nachman, Sofia Palacios Schweitzer, Tilman Plehn
SciPost Phys. 18, 200 (2025) · published 20 June 2025
- doi: 10.21468/SciPostPhys.18.6.200
- Submissions/Reports
-
Abstract
Machine learning enables unbinned, highly-differential cross section measurements. A recent idea uses generative models to morph a starting simulation into the unfolded data. We show how to extend two morphing techniques, Schrödinger Bridges and Direct Diffusion, in order to ensure that the models learn the correct conditional probabilities. This brings distribution mapping (DM) to a similar level of accuracy as the state-of-the-art conditional generative unfolding methods. Numerical results are presented with a standard benchmark dataset of single jet substructure as well as for a new dataset describing a 22-dimensional phase space of $Z+2$-jets.
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 2 3 4 5 Anja Butter,
- 6 Sascha Diefenbacher,
- 4 Nathan Huetsch,
- 6 Vinicius Mikuni,
- 6 7 Benjamin Nachman,
- 4 Sofia Palacios Schweitzer,
- 4 Tilman Plehn
- 1 Sorbonne Paris Cité [PRES]
- 2 Centre National de la Recherche Scientifique / French National Centre for Scientific Research [CNRS]
- 3 Sorbonne Université / Sorbonne University
- 4 Ruprecht-Karls-Universität Heidelberg / Heidelberg University
- 5 Laboratoire de Physique Nucléaire et de Hautes Énergies / Laboratoire de Physique Nucléaire et de Hautes Énergies [LPNHE]
- 6 Lawrence Berkeley National Laboratory [LBNL]
- 7 University of California, Berkeley [UCBL]
- Baden-Württemberg Stiftung
- Bundesministerium für Bildung und Forschung / Federal Ministry of Education and Research [BMBF]
- Centre National de la Recherche Scientifique / French National Centre for Scientific Research [CNRS]
- Deutsche Forschungsgemeinschaft / German Research FoundationDeutsche Forschungsgemeinschaft [DFG]
- National Energy Research Scientific Computing Center
- Sorbonne Université / Sorbonne University
- United States Department of Energy [DOE]