Integrable fishnet circuits and Brownian solitons
Žiga Krajnik, Enej Ilievski, Tomaž Prosen, Benjamin J. A. Héry, Vincent Pasquier
SciPost Phys. 19, 027 (2025) · published 21 July 2025
- doi: 10.21468/SciPostPhys.19.1.027
- Submissions/Reports
-
Abstract
We introduce classical many-body dynamics on a one-dimensional lattice comprising local two-body maps arranged on discrete space-time mesh that serve as discretizations of Hamiltonian dynamics with arbitrarily time-varying coupling constants. Time evolution is generated by passing an auxiliary degree of freedom along the lattice, resulting in a 'fishnet' circuit structure. We construct integrable circuits consisting of Yang-Baxter maps and demonstrate their general properties, using the Toda and anisotropic Landau-Lifschitz models as examples. Upon stochastically rescaling time, the dynamics is dominated by fluctuations and we observe solitons undergoing Brownian motion.
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 Žiga Krajnik,
- 2 Enej Ilievski,
- 2 3 Tomaž Prosen,
- 4 Benjamin J. A. Héry,
- 5 6 7 8 Vincent Pasquier
- 1 New York University [NYU]
- 2 Univerza v Ljubljani / University of Ljubljana [UL]
- 3 Institute of Mathematics, Physics, and Mechanics [IMFM]
- 4 Freie Universität Berlin / Freie Universität Berlin [FU Berlin]
- 5 Université Paris-Saclay / University of Paris-Saclay
- 6 Centre National de la Recherche Scientifique / French National Centre for Scientific Research [CNRS]
- 7 Commissariat à l'énergie atomique / CEA Saclay [CEA Saclay]
- 8 L'Institut de physique théorique [IPhT]
