A note on generalized hydrodynamics: inhomogeneous fields and other concepts
Benjamin Doyon, Takato Yoshimura
SciPost Phys. 2, 014 (2017) · published 22 April 2017
- doi: 10.21468/SciPostPhys.2.2.014
- Submissions/Reports
Abstract
Generalized hydrodynamics (GHD) was proposed recently as a formulation of hydrodynamics for integrable systems, taking into account infinitely-many conservation laws. In this note we further develop the theory in various directions. By extending GHD to all commuting flows of the integrable model, we provide a full description of how to take into account weakly varying force fields, temperature fields and other inhomogeneous external fields within GHD. We expect this can be used, for instance, to characterize the non-equilibrium dynamics of one-dimensional Bose gases in trap potentials. We further show how the equations of state at the core of GHD follow from the continuity relation for entropy, and we show how to recover Euler-like equations and discuss possible viscosity terms.
TY - JOUR
PB - SciPost Foundation
DO - 10.21468/SciPostPhys.2.2.014
TI - A note on generalized hydrodynamics: inhomogeneous fields and other concepts
PY - 2017/04/22
UR - https://scipost.org/SciPostPhys.2.2.014
JF - SciPost Physics
JA - SciPost Phys.
VL - 2
IS - 2
SP - 014
A1 - Doyon, Benjamin
AU - Yoshimura, Takato
AB - Generalized hydrodynamics (GHD) was proposed recently as a formulation of hydrodynamics for integrable systems, taking into account infinitely-many conservation laws. In this note we further develop the theory in various directions. By extending GHD to all commuting flows of the integrable model, we provide a full description of how to take into account weakly varying force fields, temperature fields and other inhomogeneous external fields within GHD. We expect this can be used, for instance, to characterize the non-equilibrium dynamics of one-dimensional Bose gases in trap potentials. We further show how the equations of state at the core of GHD follow from the continuity relation for entropy, and we show how to recover Euler-like equations and discuss possible viscosity terms.
ER -
@Article{10.21468/SciPostPhys.2.2.014,
title={{A note on generalized hydrodynamics: inhomogeneous fields and other concepts}},
author={Benjamin Doyon and Takato Yoshimura},
journal={SciPost Phys.},
volume={2},
pages={014},
year={2017},
publisher={SciPost},
doi={10.21468/SciPostPhys.2.2.014},
url={https://scipost.org/10.21468/SciPostPhys.2.2.014},
}
Cited by 147
-
Tsutsui et al., Quantum hydrodynamics from local thermal pure states
Phys. Rev. Research 4, 033059 (2022) [Crossref] -
Cubero et al., Form factors and generalized hydrodynamics for integrable systems
J. Stat. Mech. 2021, 114002 (2021) [Crossref] -
Gopalakrishnan et al., Superdiffusion from Nonabelian Symmetries in Nearly Integrable Systems
Annu. Rev. Condens. Matter Phys. 15, 159 (2024) [Crossref] -
Doyon, Exact large-scale correlations in integrable systems out of equilibrium
SciPost Phys. 5, 054 (2018) [Crossref] -
Bulchandani et al., Subdiffusive front scaling in interacting integrable models
Phys. Rev. B 99, 121410 (2019) [Crossref] -
Mestyán et al., Molecular dynamics simulation of entanglement spreading in generalized hydrodynamics
SciPost Phys. 8, 055 (2020) [Crossref] -
Pozsgay, Algebraic Construction of Current Operators in Integrable Spin Chains
Phys. Rev. Lett. 125, 070602 (2020) [Crossref] -
Malvania et al., Generalized hydrodynamics in strongly interacting 1D Bose gases
Science 373, 1129 (2021) [Crossref] -
Krajnik et al., Integrable matrix models in discrete space-time
SciPost Phys. 9, 038 (2020) [Crossref] -
Hübner, Mesoscopic impurities in generalized hydrodynamics
J. Stat. Mech. 2024, 033102 (2024) [Crossref] -
Medenjak et al., Diffusion from convection
SciPost Phys. 9, 075 (2020) [Crossref] -
Bettelheim, The Whitham approach to the c → 0 limit of the Lieb–Liniger model and generalized hydrodynamics
J. Phys. A: Math. Theor. 53, 205204 (2020) [Crossref] -
Yoshimura et al., Collision rate ansatz for quantum integrable systems
SciPost Phys. 9, 040 (2020) [Crossref] -
Bertini et al., Low-temperature transport in out-of-equilibrium XXZ chains
J. Stat. Mech. 2018, 033104 (2018) [Crossref] -
Piroli et al., Transport in out-of-equilibrium XXZ chains: Nonballistic behavior and correlation functions
Phys. Rev. B 96, 115124 (2017) [Crossref] -
Gawędzki et al., Finite-Time Universality in Nonequilibrium CFT
J Stat Phys 172, 353 (2018) [Crossref] -
Bouchoule et al., Generalized hydrodynamics in the one-dimensional Bose gas: theory and experiments
J. Stat. Mech. 2022, 014003 (2022) [Crossref] -
Bastianello et al., Generalized hydrodynamics of classical integrable field theory: the sinh-Gordon model
SciPost Phys. 4, 045 (2018) [Crossref] -
Gopalakrishnan et al., Hydrodynamics of operator spreading and quasiparticle diffusion in interacting integrable systems
Phys. Rev. B 98, 220303 (2018) [Crossref] -
Schemmer et al., Generalized Hydrodynamics on an Atom Chip
Phys. Rev. Lett. 122, 090601 (2019) [Crossref] -
Bonnemain et al., Generalized hydrodynamics of the KdV soliton gas
J. Phys. A: Math. Theor. 55, 374004 (2022) [Crossref] -
Scopa et al., Generalized hydrodynamics of the repulsive spin-
12
Fermi gas
Phys. Rev. B 106, 134314 (2022) [Crossref] -
Bouchoule et al., The effect of atom losses on the distribution of rapidities in the one-dimensional Bose gas
SciPost Phys. 9, 044 (2020) [Crossref] -
Ruggiero et al., Conformal field theory on top of a breathing one-dimensional gas of hard core bosons
SciPost Phys. 6, 051 (2019) [Crossref] -
Doyon et al., Soliton Gases and Generalized Hydrodynamics
Phys. Rev. Lett. 120, 045301 (2018) [Crossref] -
Doyon et al., A geometric viewpoint on generalized hydrodynamics
Nuclear Physics B 926, 570 (2018) [Crossref] -
Doyon et al., Free energy fluxes and the Kubo–Martin–Schwinger relation
J. Stat. Mech. 2021, 043206 (2021) [Crossref] -
Kormos, Inhomogeneous quenches in the transverse field Ising chain: scaling and front dynamics
SciPost Phys. 3, 020 (2017) [Crossref] -
Guan et al., New trends in quantum integrability: recent experiments with ultracold atoms
Rep. Prog. Phys. 85, 114001 (2022) [Crossref] -
Amico et al., Roadmap on Atomtronics: State of the art and perspective
3, 039201 (2021) [Crossref] -
Møller et al., The dissipative Generalized Hydrodynamic equations and their numerical solution
Journal of Computational Physics 493, 112431 112431 (2023) [Crossref] -
Doyon et al., The Space of Integrable Systems from Generalised $T\bar{T}$-Deformations
SciPost Phys. 13, 072 (2022) [Crossref] -
Møller et al., Extension of the Generalized Hydrodynamics to the Dimensional Crossover Regime
Phys. Rev. Lett. 126, 090602 (2021) [Crossref] -
Koch et al., Adiabatic formation of bound states in the one-dimensional Bose gas
Phys. Rev. B 103, 165121 (2021) [Crossref] -
Bocini, Connected correlations in partitioning protocols: A case study and beyond
SciPost Phys. 15, 027 (2023) [Crossref] -
Rylands et al., Transport and Entanglement across Integrable Impurities from Generalized Hydrodynamics
Phys. Rev. Lett. 131, 156303 (2023) [Crossref] -
Urichuk et al., Navier-Stokes Equations for Low-Temperature One-Dimensional Quantum Fluids
Phys. Rev. Lett. 132, 243402 (2024) [Crossref] -
Khveshchenko, IT from QUBIT or ALL from HALL?
physics 64, (2024) [Crossref] -
Koch et al., Generalized hydrodynamics of the attractive non-linear Schrӧdinger equation
J. Phys. A: Math. Theor. 55, 134001 (2022) [Crossref] -
Fagotti, Global Quenches after Localized Perturbations
Phys. Rev. Lett. 128, 110602 (2022) [Crossref] -
Caux et al., Hydrodynamics of the interacting Bose gas in the Quantum Newton Cradle setup
SciPost Phys. 6, 070 (2019) [Crossref] -
Essler, A short introduction to Generalized Hydrodynamics
Physica A: Statistical Mechanics and its Applications 631, 127572 127572 (2023) [Crossref] -
Collura et al., Domain wall melting in the spin-
12
XXZ spin chain: Emergent Luttinger liquid with a fractal quasiparticle charge
Phys. Rev. B 102, 180409 (2020) [Crossref] -
Alba et al., Entanglement evolution and generalised hydrodynamics: interacting integrable systems
SciPost Phys. 7, 005 (2019) [Crossref] -
De Nardis et al., Diffusion in generalized hydrodynamics and quasiparticle scattering
SciPost Phys. 6, 049 (2019) [Crossref] -
Jiang, $\mathrm{T}\overline{\mathrm{T}}$-deformed 1d Bose gas
SciPost Phys. 12, 191 (2022) [Crossref] -
Gopalakrishnan et al., Kinetic Theory of Spin Diffusion and Superdiffusion in
XXZ
Spin Chains
Phys. Rev. Lett. 122, 127202 (2019) [Crossref] -
Gruber et al., Magnetization and entanglement after a geometric quench in the XXZ chain
Phys. Rev. B 99, 174403 (2019) [Crossref] -
Durnin et al., Diffusive hydrodynamics of inhomogenous Hamiltonians
J. Phys. A: Math. Theor. 54, 494001 (2021) [Crossref] -
Doyon, Generalized hydrodynamics of the classical Toda system
60, 073302 (2019) [Crossref] -
Myers et al., Transport fluctuations in integrable models out of equilibrium
SciPost Phys. 8, 007 (2020) [Crossref] -
VU et al., Equations of state in generalized hydrodynamics
SciPost Phys. 6, 023 (2019) [Crossref] -
De Nardis et al., Anomalous Spin Diffusion in One-Dimensional Antiferromagnets
Phys. Rev. Lett. 123, 186601 (2019) [Crossref] -
Lopez-Piqueres et al., Hydrodynamics of nonintegrable systems from a relaxation-time approximation
Phys. Rev. B 103, L060302 (2021) [Crossref] -
Collura et al., Analytic solution of the domain-wall nonequilibrium stationary state
Phys. Rev. B 97, 081111 (2018) [Crossref] -
Borsi et al., Current operators in integrable models: a review
J. Stat. Mech. 2021, 094001 (2021) [Crossref] -
De Nardis et al., Particle-hole pairs and density–density correlations in the Lieb–Liniger model
J. Stat. Mech. 2018, 033102 (2018) [Crossref] -
Bastianello et al., Superluminal moving defects in the Ising spin chain
Phys. Rev. B 98, 064304 (2018) [Crossref] -
Watson et al., Benchmarks of generalized hydrodynamics for one-dimensional Bose gases
Phys. Rev. Research 5, L022024 (2023) [Crossref] -
Dubois et al., Probing the Local Rapidity Distribution of a One-Dimensional Bose Gas
Phys. Rev. Lett. 133, 113402 (2024) [Crossref] -
Khveshchenko, Phase space holography with no strings attached
physics 61, (2022) [Crossref] -
Alba, Entanglement and quantum transport in integrable systems
Phys. Rev. B 97, 245135 (2018) [Crossref] -
Agrawal et al., Generalized hydrodynamics, quasiparticle diffusion, and anomalous local relaxation in random integrable spin chains
Phys. Rev. B 99, 174203 (2019) [Crossref] -
Kulkarni et al., Quantum quench and thermalization of one-dimensional Fermi gas via phase-space hydrodynamics
Phys. Rev. A 98, 043610 (2018) [Crossref] -
Bulchandani et al., Quasiparticle kinetic theory for Calogero models
J. Phys. A: Math. Theor. 54, 474001 (2021) [Crossref] -
Gopalakrishnan et al., Anomalous transport from hot quasiparticles in interacting spin chains
Rep. Prog. Phys. 86, 036502 (2023) [Crossref] -
Møller et al., Euler-scale dynamical correlations in integrable systems with fluid motion
SciPost Phys. Core 3, 016 (2020) [Crossref] -
Bastianello et al., Generalized Hydrodynamics with Space-Time Inhomogeneous Interactions
Phys. Rev. Lett. 123, 130602 (2019) [Crossref] -
Zadnik et al., The folded spin-1/2 XXZ model: II. Thermodynamics and hydrodynamics with a minimal set of charges
SciPost Phys. 10, 099 (2021) [Crossref] -
Rylands et al., Nonequilibrium Aspects of Integrable Models
Annu. Rev. Condens. Matter Phys. 11, 147 (2020) [Crossref] -
Gopalakrishnan et al., Anomalous relaxation and the high-temperature structure factor of XXZ spin chains
Proc. Natl. Acad. Sci. U.S.A. 116, 16250 (2019) [Crossref] -
Ruggiero et al., Quantum Generalized Hydrodynamics
Phys. Rev. Lett. 124, 140603 (2020) [Crossref] -
Doyon, Lecture notes on Generalised Hydrodynamics
SciPost Phys. Lect. Notes, 18 (2020) [Crossref] -
Doyon et al., Dynamics of hard rods with initial domain wall state
J. Stat. Mech. 2017, 073210 (2017) [Crossref] -
Horvath et al., Inhomogeneous quantum quenches in the sine-Gordon theory
SciPost Phys. 12, 144 (2022) [Crossref] -
De Nardis et al., Hydrodynamic Diffusion in Integrable Systems
Phys. Rev. Lett. 121, 160603 (2018) [Crossref] -
Yang et al., Phantom energy in the nonlinear response of a quantum many-body scar state
Science 385, 1063 (2024) [Crossref] -
Reisons et al., Emergent transport in a many-body open system driven by interacting quantum baths
Phys. Rev. B 96, 165137 (2017) [Crossref] -
Horváth, Hydrodynamics of massless integrable RG flows and a non-equilibrium c-theorem
J. High Energ. Phys. 2019, 20 (2019) [Crossref] -
Scopa et al., Real-time spin-charge separation in one-dimensional Fermi gases from generalized hydrodynamics
Phys. Rev. B 104, 115423 (2021) [Crossref] -
Kerr et al., The theory of generalised hydrodynamics for the one-dimensional Bose gas
AAPPS Bull. 33, 25 (2023) [Crossref] -
Alba et al., Entanglement dynamics after quantum quenches in generic integrable systems
SciPost Phys. 4, 017 (2018) [Crossref] -
Gamayun et al., Fredholm determinants, full counting statistics and Loschmidt echo for domain wall profiles in one-dimensional free fermionic chains
SciPost Phys. 8, 036 (2020) [Crossref] -
Bertini et al., Universal Broadening of the Light Cone in Low-Temperature Transport
Phys. Rev. Lett. 120, 176801 (2018) [Crossref] -
Agrawal et al., Anomalous low-frequency conductivity in easy-plane XXZ spin chains
Phys. Rev. B 101, 224415 (2020) [Crossref] -
De Nardis et al., Correlation functions and transport coefficients in generalised hydrodynamics
J. Stat. Mech. 2022, 014002 (2022) [Crossref] -
Friedman et al., Diffusive hydrodynamics from integrability breaking
Phys. Rev. B 101, 180302 (2020) [Crossref] -
Granet, Wavelet representation of hardcore bosons
J. Stat. Mech. 2023, 123102 (2023) [Crossref] -
Borsi et al., Current Operators in Bethe Ansatz and Generalized Hydrodynamics: An Exact Quantum-Classical Correspondence
Phys. Rev. X 10, 011054 (2020) [Crossref] -
De Nardis et al., Edge Singularities and Quasilong-Range Order in Nonequilibrium Steady States
Phys. Rev. Lett. 120, 217206 (2018) [Crossref] -
Fava et al., Hydrodynamic nonlinear response of interacting integrable systems
Proc. Natl. Acad. Sci. U.S.A. 118, e2106945118 (2021) [Crossref] -
Mestyán et al., Spin-charge separation effects in the low-temperature transport of one-dimensional Fermi gases
Phys. Rev. B 99, 014305 (2019) [Crossref] -
Veness et al., Fate of quantum shock waves at late times
Phys. Rev. B 100, 235125 (2019) [Crossref] -
Mazzoni et al., The staircase model: massless flows and hydrodynamics
J. Phys. A: Math. Theor. 54, 404005 (2021) [Crossref] -
Capizzi et al., A hydrodynamic approach to Stark localization
J. Stat. Mech. 2023, 073104 (2023) [Crossref] -
Doyon et al., Ballistic macroscopic fluctuation theory
SciPost Phys. 15, 136 (2023) [Crossref] -
Fagotti, Locally quasi-stationary states in noninteracting spin chains
SciPost Phys. 8, 048 (2020) [Crossref] -
Krajnik et al., Anisotropic Landau-Lifshitz model in discrete space-time
SciPost Phys. 11, 051 (2021) [Crossref] -
Doyon et al., Drude Weight for the Lieb-Liniger Bose Gas
SciPost Phys. 3, 039 (2017) [Crossref] -
Fava et al., Spin crossovers and superdiffusion in the one-dimensional Hubbard model
Phys. Rev. B 102, 115121 (2020) [Crossref] -
Bertini et al., Bogoliubov-Born-Green-Kirkwood-Yvon Hierarchy and Generalized Hydrodynamics
Phys. Rev. Lett. 128, 190401 (2022) [Crossref] -
Koch et al., Exact thermodynamics and transport in the classical sine-Gordon model
SciPost Phys. 15, 140 (2023) [Crossref] -
Castro-Alvaredo et al., On the hydrodynamics of unstable excitations
J. High Energ. Phys. 2020, 45 (2020) [Crossref] -
Møller et al., Introducing iFluid: a numerical framework for solving hydrodynamical equations in integrable models
SciPost Phys. 8, 041 (2020) [Crossref] -
Rosenberg et al., Dynamics of magnetization at infinite temperature in a Heisenberg spin chain
Science 384, 48 (2024) [Crossref] -
Perfetto et al., Euler-scale dynamical fluctuations in non-equilibrium interacting integrable systems
SciPost Phys. 10, 116 (2021) [Crossref] -
Bastianello et al., Hydrodynamics of weak integrability breaking
J. Stat. Mech. 2021, 114003 (2021) [Crossref] -
Bastianello et al., Entanglement spreading and quasiparticle picture beyond the pair structure
SciPost Phys. 8, 045 (2020) [Crossref] -
De Nardis et al., Hydrodynamic gauge fixing and higher order hydrodynamic expansion
J. Phys. A: Math. Theor. 56, 245001 (2023) [Crossref] -
Bertini et al., Quantum quench in the infinitely repulsive Hubbard model: the stationary state
J. Stat. Mech. 2017, 103107 (2017) [Crossref] -
Bastianello et al., From the sinh-Gordon field theory to the one-dimensional Bose gas: exact local correlations and full counting statistics
J. Stat. Mech. 2018, 113104 (2018) [Crossref] -
Bertini et al., Entanglement evolution and generalised hydrodynamics: noninteracting systems
J. Phys. A: Math. Theor. 51, 39LT01 (2018) [Crossref] -
Cecile et al., Hydrodynamic relaxation of spin helices
Phys. Rev. B 108, 075135 (2023) [Crossref] -
Wang et al., Emergent ballistic transport of Bose–Fermi mixtures in one dimension
J. Phys. A: Math. Theor. 53, 464002 (2020) [Crossref] -
Bastianello et al., Generalized hydrodynamics with dephasing noise
Phys. Rev. B 102, 161110 (2020) [Crossref] -
Doyon et al., Fluctuations in Ballistic Transport from Euler Hydrodynamics
Ann. Henri Poincaré 21, 255 (2020) [Crossref] -
Bagchi et al., Unusual ergodic and chaotic properties of trapped hard rods
Phys. Rev. E 108, 064130 (2023) [Crossref] -
Alba et al., Generalized-hydrodynamic approach to inhomogeneous quenches: correlations, entanglement and quantum effects
J. Stat. Mech. 2021, 114004 (2021) [Crossref] -
Cao et al., Incomplete Thermalization from Trap-Induced Integrability Breaking: Lessons from Classical Hard Rods
Phys. Rev. Lett. 120, 164101 (2018) [Crossref] -
Bastianello et al., Thermalization of a Trapped One-Dimensional Bose Gas via Diffusion
Phys. Rev. Lett. 125, 240604 (2020) [Crossref] -
Bulchandani et al., Solvable Hydrodynamics of Quantum Integrable Systems
Phys. Rev. Lett. 119, 220604 (2017) [Crossref] -
Durnin et al., Nonequilibrium Dynamics and Weakly Broken Integrability
Phys. Rev. Lett. 127, 130601 (2021) [Crossref] -
Maillet et al., On quantum separation of variables
59, 091417 (2018) [Crossref] -
Bastianello, Lack of thermalization for integrability-breaking impurities
EPL 125, 20001 (2019) [Crossref] -
Bastianello et al., Spreading of entanglement and correlations after a quench with intertwined quasiparticles
SciPost Phys. 5, 033 (2018) [Crossref] -
Bastianello et al., Nonequilibrium Steady State Generated by a Moving Defect: The Supersonic Threshold
Phys. Rev. Lett. 120, 060602 (2018) [Crossref] -
Rylands et al., Many-Body Dynamical Localization in a Kicked Lieb-Liniger Gas
Phys. Rev. Lett. 124, 155302 (2020) [Crossref] -
Ilievski et al., Ballistic transport in the one-dimensional Hubbard model: The hydrodynamic approach
Phys. Rev. B 96, 081118 (2017) [Crossref] -
Ilievski et al., Superdiffusion in One-Dimensional Quantum Lattice Models
Phys. Rev. Lett. 121, 230602 (2018) [Crossref] -
Suret et al., Soliton gas: Theory, numerics, and experiments
Phys. Rev. E 109, 061001 (2024) [Crossref] -
Gerbino et al., Large-scale universality in quantum reaction-diffusion from Keldysh field theory
Phys. Rev. B 109, L220304 (2024) [Crossref] -
De Nardis et al., Stability of Superdiffusion in Nearly Integrable Spin Chains
Phys. Rev. Lett. 127, 057201 (2021) [Crossref] -
Alba, Towards a generalized hydrodynamics description of Rényi entropies in integrable systems
Phys. Rev. B 99, 045150 (2019) [Crossref] -
Simmons et al., Phase-space stochastic quantum hydrodynamics for interacting Bose gases
Phys. Rev. A 106, 043309 (2022) [Crossref] -
Pawełczyk, Thermodynamics and generalized hydrodynamics of simple integrable QFT in finite volume
J. Phys. A: Math. Theor. 57, 495002 (2024) [Crossref] -
De Nardis et al., Superdiffusion from Emergent Classical Solitons in Quantum Spin Chains
Phys. Rev. Lett. 125, 070601 (2020) [Crossref] -
Bastianello et al., Integrability-Protected Adiabatic Reversibility in Quantum Spin Chains
Phys. Rev. Lett. 122, 240606 (2019) [Crossref] -
Fagotti, Higher-order generalized hydrodynamics in one dimension: The noninteracting test
Phys. Rev. B 96, 220302 (2017) [Crossref] -
Bulchandani et al., Bethe-Boltzmann hydrodynamics and spin transport in the XXZ chain
Phys. Rev. B 97, 045407 (2018) [Crossref] -
Friedman et al., Integrable Many-Body Quantum Floquet-Thouless Pumps
Phys. Rev. Lett. 123, 170603 (2019) [Crossref] -
Bertini et al., Finite-temperature transport in one-dimensional quantum lattice models
Rev. Mod. Phys. 93, 025003 (2021) [Crossref] -
Kormos et al., Semiclassical theory of front propagation and front equilibration following an inhomogeneous quantum quench
Phys. Rev. E 98, 032105 (2018) [Crossref] -
Bastianello, Sine-Gordon model from coupled condensates: A generalized hydrodynamics viewpoint
Phys. Rev. B 109, 035118 (2024) [Crossref] -
Mazza et al., Energy transport in an integrable parafermionic chain via generalized hydrodynamics
Phys. Rev. B 98, 075421 (2018) [Crossref] -
Eisler et al., Front dynamics and entanglement in the XXZ chain with a gradient
Phys. Rev. B 96, 174301 (2017) [Crossref] -
Bulchandani, Revised Enskog equation for hard rods
J. Stat. Mech. 2024, 043205 (2024) [Crossref] -
Doyon et al., Emergence of Hydrodynamic Spatial Long-Range Correlations in Nonequilibrium Many-Body Systems
Phys. Rev. Lett. 131, 027101 (2023) [Crossref]