A note on generalized hydrodynamics: inhomogeneous fields and other concepts
Benjamin Doyon, Takato Yoshimura
SciPost Phys. 2, 014 (2017) · published 22 April 2017
- doi: 10.21468/SciPostPhys.2.2.014
- Submissions/Reports
-
Abstract
Generalized hydrodynamics (GHD) was proposed recently as a formulation of hydrodynamics for integrable systems, taking into account infinitely-many conservation laws. In this note we further develop the theory in various directions. By extending GHD to all commuting flows of the integrable model, we provide a full description of how to take into account weakly varying force fields, temperature fields and other inhomogeneous external fields within GHD. We expect this can be used, for instance, to characterize the non-equilibrium dynamics of one-dimensional Bose gases in trap potentials. We further show how the equations of state at the core of GHD follow from the continuity relation for entropy, and we show how to recover Euler-like equations and discuss possible viscosity terms.
TY - JOUR
PB - SciPost Foundation
DO - 10.21468/SciPostPhys.2.2.014
TI - A note on generalized hydrodynamics: inhomogeneous fields and other concepts
PY - 2017/04/22
UR - https://scipost.org/SciPostPhys.2.2.014
JF - SciPost Physics
JA - SciPost Phys.
VL - 2
IS - 2
SP - 014
A1 - Doyon, Benjamin
AU - Yoshimura, Takato
AB - Generalized hydrodynamics (GHD) was proposed recently as a formulation of
hydrodynamics for integrable systems, taking into account infinitely-many
conservation laws. In this note we further develop the theory in various
directions. By extending GHD to all commuting flows of the integrable model, we
provide a full description of how to take into account weakly varying force
fields, temperature fields and other inhomogeneous external fields within GHD.
We expect this can be used, for instance, to characterize the non-equilibrium
dynamics of one-dimensional Bose gases in trap potentials. We further show how
the equations of state at the core of GHD follow from the continuity relation
for entropy, and we show how to recover Euler-like equations and discuss
possible viscosity terms.
ER -
@Article{SciPostPhys.2.2.014,
title={{A note on generalized hydrodynamics: inhomogeneous fields and other concepts}},
author={Benjamin Doyon and Takato Yoshimura},
journal={SciPost Phys.},
volume={2},
issue={2},
pages={014},
year={2017},
publisher={SciPost},
doi={10.21468/SciPostPhys.2.2.014},
url={https://scipost.org/10.21468/SciPostPhys.2.2.014},
}
Cited by 86

-
Jacopo De Nardis et al., Hydrodynamic Diffusion in Integrable Systems
Phys. Rev. Lett. 121, 160603 (2018) [Crossref] -
Juris Reisons et al., Emergent transport in a many-body open system driven by interacting quantum baths
Phys. Rev. B 96, 165137 (2017) [Crossref] -
D. X. Horváth, Hydrodynamics of massless integrable RG flows and a non-equilibrium c-theorem
J. High Energ. Phys. 2019, 20 (2019) [Crossref] -
Vincenzo Alba et al., Entanglement dynamics after quantum quenches in generic integrable systems
SciPost Phys. 4, 017 (2018) [Crossref] -
Oleksandr Gamayun et al., Fredholm determinants, full counting statistics and Loschmidt echo for domain wall profiles in one-dimensional free fermionic chains
SciPost Phys. 8, 036 (2020) [Crossref] -
Bruno Bertini et al., Universal Broadening of the Light Cone in Low-Temperature Transport
Phys. Rev. Lett. 120, 176801 (2018) [Crossref] -
Utkarsh Agrawal et al., Anomalous low-frequency conductivity in easy-plane XXZ spin chains
Phys. Rev. B 101, 224415 (2020) [Crossref] -
Aaron J. Friedman et al., Diffusive hydrodynamics from integrability breaking
Phys. Rev. B 101, 180302 (2020) [Crossref] -
Benjamin Doyon, Exact large-scale correlations in integrable systems out of equilibrium
SciPost Phys. 5, 054 (2018) [Crossref] -
Vir B. Bulchandani et al., Subdiffusive front scaling in interacting integrable models
Phys. Rev. B 99, 121410 (2019) [Crossref] -
Márton Borsi et al., Current Operators in Bethe Ansatz and Generalized Hydrodynamics: An Exact Quantum-Classical Correspondence
Phys. Rev. X 10, 011054 (2020) [Crossref] -
Márton Mestyán et al., Molecular dynamics simulation of entanglement spreading in generalized hydrodynamics
SciPost Phys. 8, 055 (2020) [Crossref] -
Balázs Pozsgay, Algebraic Construction of Current Operators in Integrable Spin Chains
Phys. Rev. Lett. 125, 070602 (2020) [Crossref] -
Jacopo De Nardis et al., Edge Singularities and Quasilong-Range Order in Nonequilibrium Steady States
Phys. Rev. Lett. 120, 217206 (2018) [Crossref] -
Žiga Krajnik et al., Integrable matrix models in discrete space-time
SciPost Phys. 9, 038 (2020) [Crossref] -
Marko Medenjak et al., Diffusion from convection
SciPost Phys. 9, 075 (2020) [Crossref] -
Márton Mestyán et al., Spin-charge separation effects in the low-temperature transport of one-dimensional Fermi gases
Phys. Rev. B 99, 014305 (2019) [Crossref] -
Thomas Veness et al., Fate of quantum shock waves at late times
Phys. Rev. B 100, 235125 (2019) [Crossref] -
Eldad Bettelheim, The Whitham approach to the c → 0 limit of the Lieb–Liniger model and generalized hydrodynamics
J. Phys. A: Math. Theor. 53, 205204 (2020) [Crossref] -
Takato Yoshimura et al., Collision rate ansatz for quantum integrable systems
SciPost Phys. 9, 040 (2020) [Crossref] -
Bruno Bertini et al., Low-temperature transport in out-of-equilibrium XXZ chains
J. Stat. Mech. 2018, 033104 (2018) [Crossref] -
Lorenzo Piroli et al., Transport in out-of-equilibrium XXZ chains: Nonballistic behavior and correlation functions
Phys. Rev. B 96, 115124 (2017) [Crossref] -
Krzysztof Gawędzki et al., Finite-Time Universality in Nonequilibrium CFT
J Stat Phys 172, 353 (2018) [Crossref] -
Alvise Bastianello et al., Generalized hydrodynamics of classical integrable field theory: the sinh-Gordon model
SciPost Phys. 4, 045 (2018) [Crossref] -
Sarang Gopalakrishnan et al., Hydrodynamics of operator spreading and quasiparticle diffusion in interacting integrable systems
Phys. Rev. B 98, 220303 (2018) [Crossref] -
M. Schemmer et al., Generalized Hydrodynamics on an Atom Chip
Phys. Rev. Lett. 122, 090601 (2019) [Crossref] -
Maurizio Fagotti, Locally quasi-stationary states in noninteracting spin chains
SciPost Phys. 8, 048 (2020) [Crossref] -
Isabelle Bouchoule et al., The effect of atom losses on the distribution of rapidities in the one-dimensional Bose gas
SciPost Phys. 9, 044 (2020) [Crossref] -
Paola Ruggiero et al., Conformal field theory on top of a breathing one-dimensional gas of hard core bosons
SciPost Phys. 6, 051 (2019) [Crossref] -
Benjamin Doyon et al., Soliton Gases and Generalized Hydrodynamics
Phys. Rev. Lett. 120, 045301 (2018) [Crossref] -
Benjamin Doyon et al., A geometric viewpoint on generalized hydrodynamics
Nuclear Physics B 926, 570 (2018) [Crossref] -
Benjamin Doyon et al., Drude Weight for the Lieb-Liniger Bose Gas
SciPost Phys. 3, 039 (2017) [Crossref] -
Michele Fava et al., Spin crossovers and superdiffusion in the one-dimensional Hubbard model
Phys. Rev. B 102, 115121 (2020) [Crossref] -
Márton Kormos, Inhomogeneous quenches in the transverse field Ising chain: scaling and front dynamics
SciPost Phys. 3, 020 (2017) [Crossref] -
Olalla A. Castro-Alvaredo et al., On the hydrodynamics of unstable excitations
J. High Energ. Phys. 2020, 45 (2020) [Crossref] -
Frederik Skovbo Møller et al., Introducing iFluid: a numerical framework for solving hydrodynamical equations in integrable models
SciPost Phys. 8, 041 (2020) [Crossref] -
Alvise Bastianello et al., Entanglement spreading and quasiparticle picture beyond the pair structure
SciPost Phys. 8, 045 (2020) [Crossref] -
Bruno Bertini et al., Quantum quench in the infinitely repulsive Hubbard model: the stationary state
J. Stat. Mech. 2017, 103107 (2017) [Crossref] -
Alvise Bastianello et al., From the sinh-Gordon field theory to the one-dimensional Bose gas: exact local correlations and full counting statistics
J. Stat. Mech. 2018, 113104 (2018) [Crossref] -
Bruno Bertini et al., Entanglement evolution and generalised hydrodynamics: noninteracting systems
J. Phys. A: Math. Theor. 51, 39LT01 (2018) [Crossref] -
Jean-Sébastien Caux et al., Hydrodynamics of the interacting Bose gas in the Quantum Newton Cradle setup
SciPost Phys. 6, 070 (2019) [Crossref] -
Sheng Wang et al., Emergent ballistic transport of Bose–Fermi mixtures in one dimension
J. Phys. A: Math. Theor. 53, 464002 (2020) [Crossref] -
Mario Collura et al., Domain wall melting in the spin-
12
XXZ spin chain: Emergent Luttinger liquid with a fractal quasiparticle charge
Phys. Rev. B 102, 180409 (2020) [Crossref] -
Vincenzo Alba et al., Entanglement evolution and generalised hydrodynamics: interacting integrable systems
SciPost Phys. 7, 005 (2019) [Crossref] -
Alvise Bastianello et al., Generalized hydrodynamics with dephasing noise
Phys. Rev. B 102, 161110 (2020) [Crossref] -
Benjamin Doyon et al., Fluctuations in Ballistic Transport from Euler Hydrodynamics
Ann. Henri Poincaré 21, 255 (2020) [Crossref] -
Jacopo De Nardis et al., Diffusion in generalized hydrodynamics and quasiparticle scattering
SciPost Phys. 6, 049 (2019) [Crossref] -
Xiangyu Cao et al., Incomplete Thermalization from Trap-Induced Integrability Breaking: Lessons from Classical Hard Rods
Phys. Rev. Lett. 120, 164101 (2018) [Crossref] -
Sarang Gopalakrishnan et al., Kinetic Theory of Spin Diffusion and Superdiffusion in
XXZ
Spin Chains
Phys. Rev. Lett. 122, 127202 (2019) [Crossref] -
Matthias Gruber et al., Magnetization and entanglement after a geometric quench in the XXZ chain
Phys. Rev. B 99, 174403 (2019) [Crossref] -
Alvise Bastianello et al., Thermalization of a Trapped One-Dimensional Bose Gas via Diffusion
Phys. Rev. Lett. 125, 240604 (2020) [Crossref] -
Vir B. Bulchandani et al., Solvable Hydrodynamics of Quantum Integrable Systems
Phys. Rev. Lett. 119, 220604 (2017) [Crossref] -
Benjamin Doyon, Generalized hydrodynamics of the classical Toda system
Journal of Mathematical Physics 60, 073302 (2019) [Crossref] -
Jason Myers et al., Transport fluctuations in integrable models out of equilibrium
SciPost Phys. 8, 007 (2020) [Crossref] -
J. M. Maillet et al., On quantum separation of variables
Journal of Mathematical Physics 59, 091417 (2018) [Crossref] -
Alvise Bastianello, Lack of thermalization for integrability-breaking impurities
EPL 125, 20001 (2019) [Crossref] -
Dinh-Long VU et al., Equations of state in generalized hydrodynamics
SciPost Phys. 6, 023 (2019) [Crossref] -
Jacopo De Nardis et al., Anomalous Spin Diffusion in One-Dimensional Antiferromagnets
Phys. Rev. Lett. 123, 186601 (2019) [Crossref] -
Alvise Bastianello et al., Spreading of entanglement and correlations after a quench with intertwined quasiparticles
SciPost Phys. 5, 033 (2018) [Crossref] -
Alvise Bastianello et al., Nonequilibrium Steady State Generated by a Moving Defect: The Supersonic Threshold
Phys. Rev. Lett. 120, 060602 (2018) [Crossref] -
Javier Lopez-Piqueres et al., Hydrodynamics of nonintegrable systems from a relaxation-time approximation
Phys. Rev. B 103, L060302 (2021) [Crossref] -
Colin Rylands et al., Many-Body Dynamical Localization in a Kicked Lieb-Liniger Gas
Phys. Rev. Lett. 124, 155302 (2020) [Crossref] -
Enej Ilievski et al., Ballistic transport in the one-dimensional Hubbard model: The hydrodynamic approach
Phys. Rev. B 96, 081118 (2017) [Crossref] -
Mario Collura et al., Analytic solution of the domain-wall nonequilibrium stationary state
Phys. Rev. B 97, 081111 (2018) [Crossref] -
Enej Ilievski et al., Superdiffusion in One-Dimensional Quantum Lattice Models
Phys. Rev. Lett. 121, 230602 (2018) [Crossref] -
J De Nardis et al., Particle-hole pairs and density–density correlations in the Lieb–Liniger model
J. Stat. Mech. 2018, 033102 (2018) [Crossref] -
Vincenzo Alba, Towards a generalized hydrodynamics description of Rényi entropies in integrable systems
Phys. Rev. B 99, 045150 (2019) [Crossref] -
Alvise Bastianello et al., Superluminal moving defects in the Ising spin chain
Phys. Rev. B 98, 064304 (2018) [Crossref] -
Jacopo De Nardis et al., Superdiffusion from Emergent Classical Solitons in Quantum Spin Chains
Phys. Rev. Lett. 125, 070601 (2020) [Crossref] -
Alvise Bastianello et al., Integrability-Protected Adiabatic Reversibility in Quantum Spin Chains
Phys. Rev. Lett. 122, 240606 (2019) [Crossref] -
Maurizio Fagotti, Higher-order generalized hydrodynamics in one dimension: The noninteracting test
Phys. Rev. B 96, 220302 (2017) [Crossref] -
Vir B. Bulchandani et al., Bethe-Boltzmann hydrodynamics and spin transport in the XXZ chain
Phys. Rev. B 97, 045407 (2018) [Crossref] -
Vincenzo Alba, Entanglement and quantum transport in integrable systems
Phys. Rev. B 97, 245135 (2018) [Crossref] -
Utkarsh Agrawal et al., Generalized hydrodynamics, quasiparticle diffusion, and anomalous local relaxation in random integrable spin chains
Phys. Rev. B 99, 174203 (2019) [Crossref] -
Aaron J. Friedman et al., Integrable Many-Body Quantum Floquet-Thouless Pumps
Phys. Rev. Lett. 123, 170603 (2019) [Crossref] -
Manas Kulkarni et al., Quantum quench and thermalization of one-dimensional Fermi gas via phase-space hydrodynamics
Phys. Rev. A 98, 043610 (2018) [Crossref] -
Márton Kormos et al., Semiclassical theory of front propagation and front equilibration following an inhomogeneous quantum quench
Phys. Rev. E 98, 032105 (2018) [Crossref] -
Frederik Skovbo Møller et al., Euler-scale dynamical correlations in integrable systems with fluid motion
SciPost Phys. Core 3, 016 (2020) [Crossref] -
Alvise Bastianello et al., Generalized Hydrodynamics with Space-Time Inhomogeneous Interactions
Phys. Rev. Lett. 123, 130602 (2019) [Crossref] -
Colin Rylands et al., Nonequilibrium Aspects of Integrable Models
Annu. Rev. Condens. Matter Phys. 11, 147 (2020) [Crossref] -
Leonardo Mazza et al., Energy transport in an integrable parafermionic chain via generalized hydrodynamics
Phys. Rev. B 98, 075421 (2018) [Crossref] -
Sarang Gopalakrishnan et al., Anomalous relaxation and the high-temperature structure factor of XXZ spin chains
Proc Natl Acad Sci USA 116, 16250 (2019) [Crossref] -
Viktor Eisler et al., Front dynamics and entanglement in the XXZ chain with a gradient
Phys. Rev. B 96, 174301 (2017) [Crossref] -
Paola Ruggiero et al., Quantum Generalized Hydrodynamics
Phys. Rev. Lett. 124, 140603 (2020) [Crossref] -
Benjamin Doyon, Lecture notes on Generalised Hydrodynamics
SciPost Phys. Lect. Notes, 18 (2020) [Crossref] -
Benjamin Doyon et al., Dynamics of hard rods with initial domain wall state
J. Stat. Mech. 2017, 073210 (2017) [Crossref]