Emergent Gravity and the Dark Universe
Erik P. Verlinde
SciPost Phys. 2, 016 (2017) · published 16 May 2017
- doi: 10.21468/SciPostPhys.2.3.016
- Submissions/Reports
-
Abstract
Recent theoretical progress indicates that spacetime and gravity emerge together from the entanglement structure of an underlying microscopic theory. These ideas are best understood in Anti-de Sitter space, where they rely on the area law for entanglement entropy. The extension to de Sitter space requires taking into account the entropy and temperature associated with the cosmological horizon. Using insights from string theory, black hole physics and quantum information theory we argue that the positive dark energy leads to a thermal volume law contribution to the entropy that overtakes the area law precisely at the cosmological horizon. Due to the competition between area and volume law entanglement the microscopic de Sitter states do not thermalise at sub-Hubble scales: they exhibit memory effects in the form of an entropy displacement caused by matter. The emergent laws of gravity contain an additional 'dark' gravitational force describing the 'elastic' response due to the entropy displacement. We derive an estimate of the strength of this extra force in terms of the baryonic mass, Newton's constant and the Hubble acceleration scale $a_0$ =$cH_0$, and provide evidence for the fact that this additional 'dark gravity force' explains the observed phenomena in galaxies and clusters currently attributed to dark matter.
TY - JOUR
PB - SciPost Foundation
DO - 10.21468/SciPostPhys.2.3.016
TI - Emergent Gravity and the Dark Universe
PY - 2017/05/16
UR - https://scipost.org/SciPostPhys.2.3.016
JF - SciPost Physics
JA - SciPost Phys.
VL - 2
IS - 3
SP - 016
A1 - Verlinde, Erik P.
AB - Recent theoretical progress indicates that spacetime and gravity emerge
together from the entanglement structure of an underlying microscopic theory.
These ideas are best understood in Anti-de Sitter space, where they rely on the
area law for entanglement entropy. The extension to de Sitter space requires
taking into account the entropy and temperature associated with the
cosmological horizon. Using insights from string theory, black hole physics and
quantum information theory we argue that the positive dark energy leads to a
thermal volume law contribution to the entropy that overtakes the area law
precisely at the cosmological horizon. Due to the competition between area and
volume law entanglement the microscopic de Sitter states do not thermalise at
sub-Hubble scales: they exhibit memory effects in the form of an entropy
displacement caused by matter. The emergent laws of gravity contain an
additional 'dark' gravitational force describing the 'elastic' response due to
the entropy displacement. We derive an estimate of the strength of this extra
force in terms of the baryonic mass, Newton's constant and the Hubble
acceleration scale $a_0$ =$cH_0$, and provide evidence for the fact that this
additional 'dark gravity force' explains the observed phenomena in galaxies and
clusters currently attributed to dark matter.
ER -
@Article{10.21468/SciPostPhys.2.3.016,
title={{Emergent Gravity and the Dark Universe}},
author={Erik P. Verlinde},
journal={SciPost Phys.},
volume={2},
pages={016},
year={2017},
publisher={SciPost},
doi={10.21468/SciPostPhys.2.3.016},
url={https://scipost.org/10.21468/SciPostPhys.2.3.016},
}
Cited by 230

-
Chan et al., There is no universal acceleration scale in galaxies
74, 1441 (2022) [Crossref] -
Khoury, Dark Matter Superfluidity
SciPost Phys. Lect. Notes, 42 (2022) [Crossref] -
Xiao et al., On the entropy variation in the scenario of entropic gravity
Physics Letters B 780, 34 (2018) [Crossref] -
Famaey et al., Emergence of the mass discrepancy-acceleration relation from dark matter-baryon interactions
J. Cosmol. Astropart. Phys. 2018, 038 (2018) [Crossref] -
Tatum, Flat Space Cosmology as a Model of Penrose’s Weyl Curvature Hypothesis and Gravitational Entropy
JMP 09, 1935 (2018) [Crossref] -
Cai et al., From Rindler fluid to dark fluid on the holographic cutoff surface
SciPost Phys. Proc., 003 (2021) [Crossref] -
Jusufi, Regular black holes in Verlinde’s emergent gravity
Annals of Physics 448, 169191 169191 (2023) [Crossref] -
Kibaroğlu et al., Friedmann equations for deformed entropic gravity
Int. J. Mod. Phys. D 29, 2050042 (2020) [Crossref] -
Banik et al., The Global Stability of M33 in MOND
ApJ 905, 135 (2020) [Crossref] -
Cadoni et al., Effective models of nonsingular quantum black holes
Phys. Rev. D 106, 024030 (2022) [Crossref] -
Chardin et al., MOND-like behavior in the Dirac–Milne universe
A&A 652, A91 (2021) [Crossref] -
Skordis et al., New Relativistic Theory for Modified Newtonian Dynamics
Phys. Rev. Lett. 127, 161302 (2021) [Crossref] -
Steinhart, Atheists Giving Thanks to the Sun
Philosophia 49, 1219 (2021) [Crossref] -
Carone et al., Composite graviton self-interactions in a model of emergent gravity
Phys. Rev. D 98, 024041 (2018) [Crossref] -
Ettori et al., Hydrostatic mass profiles in X-COP galaxy clusters
A&A 621, A39 (2019) [Crossref] -
Hossenfelder et al., The redshift-dependence of radial acceleration: Modified gravity versus particle dark matter
Int. J. Mod. Phys. D 27, 1847010 (2018) [Crossref] -
Chan, A Comment on ‘Cosmology and Convention’ by David Merritt
J Gen Philos Sci 50, 283 (2019) [Crossref] -
Terry Tatum,
, (2020) [Crossref] -
ZuHone et al., Testing Emergent Gravity with Optical, X-Ray, and Weak Lensing Measurements in Massive, Relaxed Galaxy Clusters
ApJ 880, 145 (2019) [Crossref] -
Ghari et al., Dark matter–baryon scaling relations from Einasto halo fits to SPARC galaxy rotation curves
A&A 623, A123 (2019) [Crossref] -
Mistele et al., Galactic mass-to-light ratios with superfluid dark matter
A&A 664, A40 (2022) [Crossref] -
Pittordis et al., Testing modified-gravity theories via wide binaries and GAIA
480, 1778 (2018) [Crossref] -
Ashmead, Time dispersion in quantum electrodynamics
J. Phys.: Conf. Ser. 2482, 012023 (2023) [Crossref] -
Chan et al., The Solar system test for the general modified gravity theories
518, 6238 (2022) [Crossref] -
Dai et al., Strong lensing constraints on modified gravity models
Phys. Rev. D 98, 124027 (2018) [Crossref] -
Tamburini et al., Can the periodic spectral modulations observed in 236 Sloan Sky Survey stars be due to dark matter effects?
Phys. Scr. 92, 095001 (2017) [Crossref] -
Yang et al., Gravitational lensing in conformal and emergent gravity
EPJ Web Conf. 206, 07002 (2019) [Crossref] -
Rodrigues et al., Absence of a fundamental acceleration scale in galaxies
Nat Astron 2, 668 (2018) [Crossref] -
Cadoni et al., Anisotropic fluid cosmology: An alternative to dark matter?
Phys. Rev. D 102, 023514 (2020) [Crossref] -
Shu et al., Fluctuation and inertia
Nuclear Physics B 950, 114873 114873 (2020) [Crossref] -
Hansen et al., Non-relativistic gravity and its coupling to matter
J. High Energ. Phys. 2020, 145 (2020) [Crossref] -
KİBAROĞLU, GUP-corrected ΛCDM cosmology
26, 501 (2022) [Crossref] -
Millano et al., Phase space analysis of the bouncing universe with stringy effects
Physics Letters B 841, 137916 137916 (2023) [Crossref] -
Bartlett, Tomorrow's Physics Alters Information Technology Which Alters Global Economics and Social Science
SSRN Journal, (2018) [Crossref] -
Hayden et al., Learning the Alpha-bits of black holes
J. High Energ. Phys. 2019, 7 (2019) [Crossref] -
Vacaru et al., Off-diagonal cosmological solutions in emergent gravity theories and Grigory Perelman entropy for geometric flows
Eur. Phys. J. C 81, 81 (2021) [Crossref] -
Biró et al., Black hole horizons can hide positive heat capacity
Physics Letters B 782, 228 (2018) [Crossref] -
De Córdoba et al., On the cosmological constant as a quantum operator
Int. J. Geom. Methods Mod. Phys. 20, 2350065 (2023) [Crossref] -
Anninos et al., Higher spin de Sitter Hilbert space
J. High Energ. Phys. 2019, 71 (2019) [Crossref] -
Hernandez et al., Challenging a Newtonian prediction through Gaia wide binaries
Int. J. Mod. Phys. D 28, 1950101 (2019) [Crossref] -
Tatum et al., Cosmic Time as an Emergent Property of Cosmic Thermodynamics
JMP 09, 1941 (2018) [Crossref] -
Artigue, Billiards and Toy Gravitons
J Stat Phys 175, 213 (2019) [Crossref] -
Levshakov et al., Testing the weak equivalence principle by differential measurements of fundamental constants in the Magellanic Clouds
487, 5175 (2019) [Crossref] -
Saha et al., Rényi holographic dark energy in higher dimension Cosmology
Annals of Physics 426, 168403 168403 (2021) [Crossref] -
Tamosiunas et al., Testing emergent gravity on galaxy cluster scales
J. Cosmol. Astropart. Phys. 2019, 053 (2019) [Crossref] -
An et al., Realize Emergent Gravity to Generic Situations
Eur. Phys. J. C 81, 789 (2021) [Crossref] -
Monerat et al., The effects of dark energy on the early Universe with radiation and an ad hoc potential
Eur. Phys. J. Plus 137, 117 (2022) [Crossref] -
Carney et al., Tabletop experiments for quantum gravity: a user’s manual
Class. Quantum Grav. 36, 034001 (2019) [Crossref] -
Iorio, Calculation of the Uncertainties in the Planetary Precessions with the Recent EPM2017 Ephemerides and their Use in Fundamental Physics and Beyond
AJ 157, 220 (2019) [Crossref] -
Chen et al., Geometric Support for Dark Matter by an Unaligned Einstein Ring in A3827
ApJ 898, 81 (2020) [Crossref] -
Abreu et al., MOND and cosmological issues from entropic gravity and nonextensive thermostatistics correspondence
EPL 120, 20003 (2017) [Crossref] -
Baker et al., Novel Probes Project: Tests of gravity on astrophysical scales
Rev. Mod. Phys. 93, 015003 (2021) [Crossref] -
De Córdoba et al., On the cosmological constant of flat FLRW spacetime
Int. J. Geom. Methods Mod. Phys. 20, 2350029 (2023) [Crossref] -
Díaz-Saldaña et al., An effective cosmological constant from an entropic formulation of gravity
Int. J. Mod. Phys. D 29, 2050064 (2020) [Crossref] -
Keppens, What Constitutes Emergent Quantum Reality? A Complex System Exploration from Entropic Gravity and the Universal Constants
Entropy 20, 335 (2018) [Crossref] -
Linnemann, Quantisation as a method of generation: The nature and prospects of theory changes through quantisation
Studies in History and Philosophy of Science 92, 209 (2022) [Crossref] -
Tatum et al., Equivalence between a Gravity Field and an Unruh Acceleration Temperature Field as a Possible Clue to “Dark Matter”
JMP 09, 1568 (2018) [Crossref] -
Safarzadeh et al., The Challenge to MOND from Ultra-faint Dwarf Galaxies
ApJL 914, L37 (2021) [Crossref] -
Franzin et al., Sine-Gordon solitonic scalar stars and black holes
Phys. Rev. D 97, 124018 (2018) [Crossref] -
Zonoozi et al., The Kennicutt–Schmidt law and the main sequence of galaxies in Newtonian and milgromian dynamics
506, 5468 (2021) [Crossref] -
Famaey et al., Baryon-Interacting Dark Matter: heating dark matter and the emergence of galaxy scaling relations
J. Cosmol. Astropart. Phys. 2020, 025 (2020) [Crossref] -
Päs,
204, 121 (2022) [Crossref] -
Blanchet et al., Dipolar dark matter as an effective field theory
Phys. Rev. D 96, 083512 (2017) [Crossref] -
Andriot, On classical de Sitter and Minkowski solutions with intersecting branes
J. High Energ. Phys. 2018, 54 (2018) [Crossref] -
Vopson, Estimation of the information contained in the visible matter of the universe
AIP Advances 11, 105317 (2021) [Crossref] -
Chan et al., The radial acceleration relation in galaxy clusters
492, 5865 (2020) [Crossref] -
Peach, Emergent dark gravity from (non)holographic screens
J. High Energ. Phys. 2019, 151 (2019) [Crossref] -
Jaksland, The multiple realizability of general relativity in quantum gravity
Synthese 199, 441 (2021) [Crossref] -
Torromé et al., On the Emergent Origin of the Inertial Mass
Found Phys 53, 52 (2023) [Crossref] -
Milgrom, MOND vs. dark matter in light of historical parallels
Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 71, 170 (2020) [Crossref] -
Yoon et al., Verlinde gravity effects on the orbits of the planets and the Moon in the Solar System
Class. Quantum Grav. 37, 135007 (2020) [Crossref] -
Cadoni et al., Effective fluid description of the dark universe
Physics Letters B 776, 242 (2018) [Crossref] -
Zaripov, Dark Matter as a Result of Field Oscillations in the Modified Theory of Induced Gravity
Symmetry 12, 41 (2019) [Crossref] -
Raimbault,
, 27 (2020) [Crossref] -
Banks et al., Path integrals for causal diamonds and the covariant entropy principle
Phys. Rev. D 103, 106022 (2021) [Crossref] -
Tatum, A Potentially Useful Galactic Dark Matter Index
JMP 09, 1564 (2018) [Crossref] -
Srivastava et al., Tsallis holographic dark energy with hybrid expansion law
Int. J. Geom. Methods Mod. Phys. 17, 2050144 (2020) [Crossref] -
Li et al., Fitting the radial acceleration relation to individual SPARC galaxies
A&A 615, A3 (2018) [Crossref] -
Sun et al., Menzerath–Altmann’s Law of Syntax in RNA Accretion History
Life 11, 489 (2021) [Crossref] -
沈, Review of the Mysteries of Galactic Dark Matter
MP 08, 162 (2018) [Crossref] -
Sedmik et al., Next Generation Design and Prospects for Cannex
Universe 7, 234 (2021) [Crossref] -
Gwak et al., New Views on Dark Matter from Emergent Gravity
EPJ Web Conf. 168, 06006 (2018) [Crossref] -
Lim et al., Field equations and particle motion in covariant emergent gravity
Phys. Rev. D 98, 124029 (2018) [Crossref] -
Nagesh et al., The Phantom of RAMSES user guide for galaxy simulations using Milgromian and Newtonian gravity
Can. J. Phys. 99, 607 (2021) [Crossref] -
Banik et al., From Galactic Bars to the Hubble Tension: Weighing Up the Astrophysical Evidence for Milgromian Gravity
Symmetry 14, 1331 (2022) [Crossref] -
Edmonds et al., Dark matter, dark energy and fundamental acceleration
Int. J. Mod. Phys. D 29, 2043030 (2020) [Crossref] -
Pantig et al., Testing symmergent gravity through the shadow image and weak field photon deflection by a rotating black hole using the M87$$^*$$ and Sgr. $$\hbox {A}^*$$ results
Eur. Phys. J. C 83, 250 (2023) [Crossref] -
Cai et al., Emergent dark matter in late time universe on holographic screen
J. High Energ. Phys. 2018, 9 (2018) [Crossref] -
Gwak et al., Thermodynamic Volume in AdS/CFT
EPJ Web Conf. 168, 07003 (2018) [Crossref] -
Nieuwenhuizen et al., Accurate modeling of the strong and weak lensing profiles for the galaxy clusters Abell 1689 and 1835
Eur. Phys. J. Spec. Top. 230, 1137 (2021) [Crossref] -
Brown et al., The radial acceleration relation and a magnetostatic analogy in quasilinear MOND
New J. Phys. 20, 063042 (2018) [Crossref] -
Plastino et al., Entropic Forces and Newton’s Gravitation
Entropy 22, 273 (2020) [Crossref] -
Haslbauer et al., The KBC void and Hubble tension contradict ΛCDM on a Gpc scale − Milgromian dynamics as a possible solution
499, 2845 (2020) [Crossref] -
Tatum, Dark Matter as the Gravitized Vacuum: A Brief Note and Experimental Proposal
JMP 09, 2342 (2018) [Crossref] -
Frampton, On the origin and nature of dark matter
Int. J. Mod. Phys. A 33, 1830030 (2018) [Crossref] -
Brouwer et al., The weak lensing radial acceleration relation: Constraining modified gravity and cold dark matter theories with KiDS-1000
A&A 650, A113 (2021) [Crossref] -
Castro-Palacio et al., Hyperbolic space in the Newtonian limit: The cosmological constant
Int. J. Mod. Phys. D 31, 2250072 (2022) [Crossref] -
Mota, Do we have any hope of detecting scattering between dark energy and baryons through cosmology?
493, 1139 (2020) [Crossref] -
Zatrimaylov, A critique of covariant emergent gravity
J. Cosmol. Astropart. Phys. 2020, 024 (2020) [Crossref] -
Ván et al., Variational principles and nonequilibrium thermodynamics
Phil. Trans. R. Soc. A. 378, 20190178 (2020) [Crossref] -
Chae et al., Radial Acceleration Relation between Baryons and Dark or Phantom Matter in the Supercritical Acceleration Regime of Nearly Spherical Galaxies
ApJ 877, 18 (2019) [Crossref] -
Jackson Kimball et al.,
, 1 (2023) [Crossref] -
Tortora et al., The Central Dark Matter Fraction of Massive Early-Type Galaxies
Front. Astron. Space Sci. 8, 704419 (2022) [Crossref] -
Haramein et al., Resolving the Vacuum Catastrophe: A Generalized Holographic Approach
JHEPGC 05, 412 (2019) [Crossref] -
Çimdiker et al., Black hole shadow in symmergent gravity
Physics of the Dark Universe 34, 100900 100900 (2021) [Crossref] -
Cadoni et al., Long-Range Quantum Gravity
Symmetry 12, 1396 (2020) [Crossref] -
Banik et al., Directly testing gravity with Proxima Centauri
487, 1653 (2019) [Crossref] -
van Leuven et al., Towards non-AdS holography via the long string phenomenon
J. High Energ. Phys. 2018, 97 (2018) [Crossref] -
Kroupa, Solar System limits on gravitational dipoles
495, 3974 (2020) [Crossref] -
Luo et al., Emergent Gravity Fails to Explain Color-dependent Galaxy–Galaxy Lensing Signal from SDSS DR7
ApJ 914, 96 (2021) [Crossref] -
Rayimbaev et al., Quasiperiodic oscillations, weak field lensing and shadow cast around black holes in Symmergent gravity
Annals of Physics 454, 169335 169335 (2023) [Crossref] -
Yang et al., Dawn of the dark: unified dark sectors and the EDGES Cosmic Dawn 21-cm signal
J. Cosmol. Astropart. Phys. 2019, 044 (2019) [Crossref] -
Böhmer et al., On galaxy rotation curves from a continuum mechanics approach to modified gravity
Int. J. Mod. Phys. D 27, 1850007 (2018) [Crossref] -
Deliduman et al., Astrophysics with Weyl gravity
Int. J. Mod. Phys. A 33, 1845011 (2018) [Crossref] -
Dai et al., Comment on “Covariant version of Verlinde’s emergent gravity”
Phys. Rev. D 96, 108501 (2017) [Crossref] -
Olmos,
, 1 (2022) [Crossref] -
Tang et al., Measuring the Gravitomagnetic Distortion from Rotating Halos. I. Methods
ApJ 911, 44 (2021) [Crossref] -
Bubuianu et al., Entropy functionals and thermodynamics of relativistic geometric flows, stationary quasi-periodic Ricci solitons, and gravity
Annals of Physics 423, 168333 168333 (2020) [Crossref] -
Yoon, Extension of Verlinde gravity formalism to nonspherically symmetric mass distributions
Int. J. Mod. Phys. D 30, 2150024 (2021) [Crossref] -
Steinhart,
, 63 (2020) [Crossref] -
Knabel et al., Galaxy and Mass Assembly: A Comparison between Galaxy–Galaxy Lens Searches in KiDS/GAMA
AJ 160, 223 (2020) [Crossref] -
Alam et al., Towards testing the theory of gravity with DESI: summary statistics, model predictions and future simulation requirements
J. Cosmol. Astropart. Phys. 2021, 050 (2021) [Crossref] -
Han et al., Discrete gravity on random tensor network and holographic Rényi entropy
J. High Energ. Phys. 2017, 148 (2017) [Crossref] -
Cadoni et al., Emergence of a dark force in corpuscular gravity
Phys. Rev. D 97, 044047 (2018) [Crossref] -
Varieschi, Newtonian Fractional-Dimension Gravity and MOND
Found Phys 50, 1608 (2020) [Crossref] -
Abe et al., Crossover in Extended Newtonian Gravity Emerging from Thermodynamics
Symmetry 14, 1048 (2022) [Crossref] -
Olmos,
, 1795 (2023) [Crossref] -
Islam et al., Modified gravity theories in light of the anomalous velocity dispersion of NGC1052-DF2
Phys. Rev. D 100, 104049 (2019) [Crossref] -
Banik, A new line on the wide binary test of gravity
487, 5291 (2019) [Crossref] -
Holwerda et al., Deep Extragalactic VIsible Legacy Survey: Data Release 1 blended spectra search for candidate strong gravitational lenses
510, 2305 (2022) [Crossref] -
Hossenfelder et al., Analogue gravity models from conformal rescaling
Class. Quantum Grav. 34, 165004 (2017) [Crossref] -
Del Popolo et al., Turnaround radius in
ΛCDM
and dark matter cosmologies. II. The role of dynamical friction
Phys. Rev. D 102, 123510 (2020) [Crossref] -
Jusufi, Black holes surrounded by Einstein clusters as models of dark matter fluid
Eur. Phys. J. C 83, 103 (2023) [Crossref] -
Vagnozzi,
, 5 (2020) [Crossref] -
Banik et al., Scale-invariant dynamics in the Solar system
497, L62 (2020) [Crossref] -
Ali et al., Universality of minimal length
Physics Letters B 831, 137182 137182 (2022) [Crossref] -
Marochnik et al., Dark Energy from Virtual Gravitons (GCDM Model vs. ΛCDM Model)
Universe 8, 464 (2022) [Crossref] -
Yoon et al., Understanding galaxy rotation curves with Verlinde’s emergent gravity
Class. Quantum Grav. 40, 02LT01 (2023) [Crossref] -
Verheyen, From Information and Quantum Physics to Consciousness and Reality
Sci 3, 35 (2021) [Crossref] -
van Dokkum et al., A galaxy lacking dark matter
Nature 555, 629 (2018) [Crossref] -
Cao et al., Bulk entanglement gravity without a boundary: Towards finding Einstein’s equation in Hilbert space
Phys. Rev. D 97, 086003 (2018) [Crossref] -
Cai et al., Emergent dark universe and the swampland criteria
Physics of the Dark Universe 26, 100387 100387 (2019) [Crossref] -
Islam et al., Acceleration relations in the Milky Way as differentiators of modified gravity theories
Phys. Rev. D 101, 084015 (2020) [Crossref] -
Anninos et al., De Sitter horizons & holographic liquids
J. High Energ. Phys. 2019, 38 (2019) [Crossref] -
Gouttenoire,
, 73 (2022) [Crossref] -
Bagchi et al., Quantum, noncommutative and MOND corrections to the entropic law of gravitation
Int. J. Mod. Phys. B 33, 1950018 (2019) [Crossref] -
Bartlett, Relativistic Advanced Waves and Vector-Tensor-Scalar Geometry As Aids to Accurate Radiometric Dating
SSRN Journal, (2019) [Crossref] -
Dimov et al., Entanglement entropy and Fisher information metric for closed bosonic strings in homogeneous plane wave background
Phys. Rev. D 96, 126004 (2017) [Crossref] -
Maleki et al., Complementarity-entanglement tradeoff in quantum gravity
Phys. Rev. D 105, 086024 (2022) [Crossref] -
Nash, Modified general relativity
Gen Relativ Gravit 51, 53 (2019) [Crossref] -
Bonanno et al., Gravitational antiscreening in stellar interiors
J. Cosmol. Astropart. Phys. 2020, 022 (2020) [Crossref] -
Faraoni, Analogy between freezing lakes and the cosmic radiation era
Phys. Rev. Research 2, 013187 (2020) [Crossref] -
Lisanti et al., Testing dark matter and modifications to gravity using local Milky Way observables
Phys. Rev. D 100, 083009 (2019) [Crossref] -
Drees, PANENTHEISM AND NATURAL SCIENCE: A GOOD MATCH?
Zygon® 52, 1060 (2017) [Crossref] -
Kibaroğlu, Generalized entropic gravity from modified Unruh temperature
Int. J. Mod. Phys. A 34, 1950119 (2019) [Crossref] -
Pardo, Testing emergent gravity with isolated dwarf galaxies
J. Cosmol. Astropart. Phys. 2020, 012 (2020) [Crossref] -
Chan et al., Analytic radial acceleration relation for galaxy clusters
Phys. Rev. D 105, 083003 (2022) [Crossref] -
Mariz et al., Emergent gauge bosons and dynamical symmetry breaking in a four-fermion Lifshitz model
Eur. Phys. J. C 79, 550 (2019) [Crossref] -
Bartlett, Geometry, Binary Digits, Topology, Bandgap Implants & Electronic Genetic Engineering
SSRN Journal, (2019) [Crossref] -
Vopson, The information catastrophe
AIP Advances 10, 085014 (2020) [Crossref] -
van Hee,
, 25 (2019) [Crossref] -
Vacaru, Geometric information flows and G. Perelman entropy for relativistic classical and quantum mechanical systems
Eur. Phys. J. C 80, 639 (2020) [Crossref] -
El-Zant, Galaxy formation and dark matter: small scale problems and quantum effects on astrophysical scales
J. Phys.: Conf. Ser. 1253, 012007 (2019) [Crossref] -
Bertolami et al., Using a non-minimal coupling between matter and curvature to sequester the cosmological constant
Gen Relativ Gravit 52, 44 (2020) [Crossref] -
Finster et al., A mechanism for dark matter and dark energy in the theory of causal fermion systems
Class. Quantum Grav. 40, 075017 (2023) [Crossref] -
Clerc et al.,
, 1 (2023) [Crossref] -
Schlatter, On the Principle of Synchronization
Entropy 20, 741 (2018) [Crossref] -
de Martino et al., Dark Matters on the Scale of Galaxies
Universe 6, 107 (2020) [Crossref] -
Bertone et al., A new era in the search for dark matter
Nature 562, 51 (2018) [Crossref] -
Martens, Dark Matter Realism
Found Phys 52, 16 (2022) [Crossref] -
Tortora et al., Testing Verlinde's emergent gravity in early-type galaxies
473, 2324 (2018) [Crossref] -
Dimov et al.,
255, 205 (2018) [Crossref] -
Li et al., Testing Verlinde’s gravity using gravitational lensing of clusters
487, 3734 (2019) [Crossref] -
Tatum, Why Flat Space Cosmology Is Superior to Standard Inflationary Cosmology
JMP 09, 1867 (2018) [Crossref] -
Stadtler et al., The dynamics of spatially confined oscillations
Can. J. Phys. 99, 222 (2021) [Crossref] -
Hauret et al., Cosmological Time, Entropy and Infinity
Entropy 19, 357 (2017) [Crossref] -
Brodsky, Supersymmetric Properties of Hadron Physics from Light-Front Holography and Superconformal Algebra and other Advances in Light-Front QCD
Few-Body Syst 59, 25 (2018) [Crossref] -
Tanaka et al., Flowers behind the back of the universe: A cosmic art project exploring the invisible
Acta Astronautica 146, 435 (2018) [Crossref] -
Jervis, A comparison of two theories to explain the rotation curves in galaxies without dark matter particles
Astrophys Space Sci 363, 254 (2018) [Crossref] -
Cadoni et al., Galactic dynamics and long-range quantum gravity
Phys. Rev. D 100, 024029 (2019) [Crossref] -
Newell et al., Pattern universes
Comptes Rendus Mécanique 347, 318 (2019) [Crossref] -
Jusufi et al., Black hole shadows in Verlinde’s emergent gravity
503, 1310 (2021) [Crossref] -
Durazo et al., A Test of MONDian Gravity in ∼300 Pressure-supported Elliptical Galaxies from the MaNGA Survey
ApJ 863, 107 (2018) [Crossref] -
Tatum, Calculating Radiation Temperature Anisotropy in Flat Space Cosmology
JMP 09, 1946 (2018) [Crossref] -
Álvarez, Windows on Quantum Gravity
Fortschr. Phys. 69, 2000080 (2021) [Crossref] -
Cadoni et al., Quasi-normal modes and microscopic description of 2D black holes
J. High Energ. Phys. 2022, 87 (2022) [Crossref] -
Wang et al., Holographic dark energy
Physics Reports 696, 1 (2017) [Crossref] -
Milgrom, Noncovariance at low accelerations as a route to MOND
Phys. Rev. D 100, 084039 (2019) [Crossref] -
Ge et al., Quantum computational complexity, Einstein's equations and accelerated expansion of the Universe
J. Cosmol. Astropart. Phys. 2018, 047 (2018) [Crossref] -
Giusti, On the corpuscular theory of gravity
Int. J. Geom. Methods Mod. Phys. 16, 1930001 (2019) [Crossref] -
Betzios et al., Emergent gravity from hidden sectors and TT deformations
J. High Energ. Phys. 2021, 202 (2021) [Crossref] -
Hossenfelder et al., Strong lensing with superfluid dark matter
J. Cosmol. Astropart. Phys. 2019, 001 (2019) [Crossref] -
Zoutendijk et al., The MUSE-Faint survey
A&A 651, A80 (2021) [Crossref] -
Banks, Holographic Space-Time and Quantum Information
Front. Phys. 8, 111 (2020) [Crossref] -
Shen, The dark-baryonic matter mass relation for observational verification in Verlinde’s emergent gravity
Gen Relativ Gravit 50, 73 (2018) [Crossref] -
Cohen-Tannoudji, Lambda, the fifth foundational constant considered by Einstein
Metrologia 55, 486 (2018) [Crossref] -
Read et al., Dark matter heats up in dwarf galaxies
484, 1401 (2019) [Crossref] -
Trindade et al., Clifford Algebras, Multipartite Systems and Gauge Theory Gravity
Adv. Appl. Clifford Algebras 29, 1 (2019) [Crossref] -
Krishna et al., Entropy maximization in the emergent gravity paradigm
Phys. Rev. D 99, 023535 (2019) [Crossref] -
Nieuwenhuizen et al., Modified Gravity and its test on galaxy clusters
476, 3393 (2018) [Crossref] -
Tatum et al., Flat Space Cosmology as a Model of Light Speed Cosmic Expansion—Implications for the Vacuum Energy Density
JMP 09, 2008 (2018) [Crossref] -
Glattfelder,
, 473 (2019) [Crossref] -
Bartlett, A Conceivable Path to Immortality in Your Present Body That Uses Physics, Electronics and 'Cloning'
SSRN Journal, (2019) [Crossref] -
Schneider, Trans-Planckian philosophy of cosmology
Studies in History and Philosophy of Science Part A 90, 184 (2021) [Crossref] -
Linnemann et al., Hints towards the emergent nature of gravity
Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 64, 1 (2018) [Crossref] -
Qi, Does gravity come from quantum information?
Nature Phys 14, 984 (2018) [Crossref] -
Andriot, New Constraints on Classical de Sitter: Flirting with the Swampland
Fortschr. Phys. 67, 1800103 (2019) [Crossref] -
Edvardsson, Relativistic gravitational force
Celest Mech Dyn Astron 135, 25 (2023) [Crossref] -
Diaz-Barron et al., On emergent gravity, ungravity and Λ
Physics Letters B 818, 136365 136365 (2021) [Crossref] -
Cadoni et al., Emergence of a cosmological constant in anisotropic fluid cosmology
Int. J. Mod. Phys. A 36, 2150156 (2021) [Crossref] -
Pérez-Cuéllar et al., On planetary orbits in entropic gravity
Mod. Phys. Lett. A 36, 2150050 (2021) [Crossref] -
Prihadi et al., Replica trick calculation for entanglement entropy of static black hole spacetimes
Int. J. Geom. Methods Mod. Phys. 20, 2350132 (2023) [Crossref] -
Bubuianu et al., Kaluza–Klein gravity and cosmology emerging from G. Perelman’s entropy functionals and quantum geometric information flows
Eur. Phys. J. Plus 136, 149 (2021) [Crossref] -
Tee et al., Relating Vertex and Global Graph Entropy in Randomly Generated Graphs
Entropy 20, 481 (2018) [Crossref] -
Morvan et al., On the Euclidean action of de Sitter black holes and constrained instantons
SciPost Phys. 14, 022 (2023) [Crossref] -
Halenka et al., Testing emergent gravity with mass densities of galaxy clusters
Phys. Rev. D 102, 084007 (2020) [Crossref] -
Frampton, Holographic entanglement entropy and cyclic cosmology
Physics of the Dark Universe 20, 28 (2018) [Crossref] -
Filomeno, Stable regularities without governing laws?
Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 66, 186 (2019) [Crossref] -
Barrientos et al., Nonminimal couplings, gravitational waves, and torsion in Horndeski’s theory
Phys. Rev. D 96, 084023 (2017) [Crossref] -
Banik et al., Testing gravity with wide binary stars like α Centauri
480, 2660 (2018) [Crossref] -
Zaanen et al., Crystal gravity
SciPost Phys. 13, 039 (2022) [Crossref] -
Bhattacharya et al., Comments on the entropic gravity proposal
Eur. Phys. J. C 78, 627 (2018) [Crossref] -
Ván et al., Emergence of extended Newtonian gravity from thermodynamics
Physica A: Statistical Mechanics and its Applications 588, 126505 126505 (2022) [Crossref] -
Eappen et al., The formation of early-type galaxies through monolithic collapse of gas clouds in Milgromian gravity
516, 1081 (2022) [Crossref] -
Ipek et al., The Entropic Dynamics of Quantum Scalar Fields Coupled to Gravity
Symmetry 12, 1324 (2020) [Crossref] -
Naudts, Emergent Coulomb Forces in Reducible Quantum Electrodynamics
Found Sci 25, 209 (2020) [Crossref] -
Dai et al., Inconsistencies in Verlinde’s emergent gravity
J. High Energ. Phys. 2017, 7 (2017) [Crossref] -
Venkataramani et al., Pattern dark matter and galaxy scaling relations
Eur. Phys. J. Spec. Top. 230, 2139 (2021) [Crossref] -
Verlinde et al., Black hole entropy and long strings
Int. J. Mod. Phys. D 31, 2242006 (2022) [Crossref] -
Lee et al., Dark energy and dark matter in emergent gravity
J. Korean Phys. Soc. 81, 910 (2022) [Crossref]