Extrapolating jet radiation with autoregressive transformers
Anja Butter, François Charton, Javier Mariño Villadamigo, Ayodele Ore, Tilman Plehn, Jonas Spinner
SciPost Phys. 20, 004 (2026) · published 12 January 2026
- doi: 10.21468/SciPostPhys.20.1.004
- Submissions/Reports
-
Abstract
Generative networks are an exciting tool for fast LHC event generation with fixed number of particles. Autoregressive transformers allow us to generate events containing variable numbers of particles, very much in line with the physics of QCD jet radiation, and offer the possibility to generalize to higher multiplicities. We show how transformers can learn a factorized likelihood for jet radiation and extrapolate in terms of the number of generated jets. For this extrapolation, bootstrapping training data and training with modifications of the likelihood loss can be used.
Supplementary Information
External links to supplemental resources; opens in a new tab.
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 2 3 4 5 Anja Butter,
- 6 François Charton,
- 1 Javier Mariño Villadamigo,
- 1 Ayodele Ore,
- 1 Tilman Plehn,
- 1 Jonas Spinner
- 1 Ruprecht-Karls-Universität Heidelberg / Heidelberg University
- 2 Centre National de la Recherche Scientifique / French National Centre for Scientific Research [CNRS]
- 3 Sorbonne Université / Sorbonne University
- 4 Sorbonne Paris Cité [PRES]
- 5 Laboratoire de Physique Nucléaire et de Hautes Énergies / Laboratoire de Physique Nucléaire et de Hautes Énergies [LPNHE]
- 6 École nationale des ponts et chaussées / École nationale des ponts et chaussées [ENPC]
