SciPost logo

Theory-agnostic searches for non-gravitational modes in black hole ringdown

Francesco Crescimbeni, Xisco Jimenez Forteza, Swetha Bhagwat, Julian Westerweck, Paolo Pani

SciPost Phys. 20, 025 (2026) · published 30 January 2026

Abstract

In any extension of General Relativity (GR), extra fundamental degrees of freedom couple to gravity. Besides deforming GR forecasts in a theory-dependent way, this coupling generically introduces extra modes in the gravitational-wave signal. We propose a novel theory-agnostic test of gravity to search for these nongravitational modes in black hole merger ringdown signals. To leading order in the GR deviations, their frequencies and damping times match those of a test scalar or vector field in a Kerr background, with only amplitudes and phases as free parameters. By applying this test to GW150914, GW190521, and GW200129, we find no strong evidence for an extra mode; however, its inclusion modifies the inferred distribution of the remnant spin. This test will be applicable for future detectors, which will achieve signal-to-noise ratios higher than 100 (and as high as 1000 for space-based detectors such as LISA). Such sensitivity will allow measurement of these modes with amplitude ratios as low as 0.02 for ground-based detectors (and as low as 0.003 for LISA), relative to the fundamental mode, enabling stringent agnostic constraints or detection of scalar/vector modes.


Ontology / Topics

See full Ontology or Topics database.

Bayesian statistical inference Black holes

Authors / Affiliations: mappings to Contributors and Organizations

See all Organizations.
Funders for the research work leading to this publication