Emergence of curved light-cones in a class of inhomogeneous Luttinger liquids
Jérôme Dubail, Jean-Marie Stéphan, Pasquale Calabrese
SciPost Phys. 3, 019 (2017) · published 6 September 2017
- doi: 10.21468/SciPostPhys.3.3.019
- Submissions/Reports
Abstract
The light-cone spreading of entanglement and correlation is a fundamental and ubiquitous feature of homogeneous extended quantum systems. Here we point out that a class of inhomogenous Luttinger liquids (those with a uniform Luttinger parameter $K$) at low energy display the universal phenomenon of curved light cones: gapless excitations propagate along the geodesics of the metric $ds^2=dx^2+v(x)^2 d\tau^2$, with $v(x)$ being the calculable spatial dependent velocity induced by the inhomogeneity. We confirm our findings with explicit analytic and numerical calculations both in- and out-of-equilibrium for a Tonks-Girardeau gas in a harmonic potential and in lattice systems with artificially tuned hamiltonian density.
Cited by 68
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 Université de Lorraine [Univ Lorraine]
- 2 Claude Bernard University Lyon 1 [UCBL]
- 3 Istituto Nazionale di Fisica Nucleare (presso la SISSA) / National Institute of Nuclear Physics (at SISSA) [INFN at SISSA]