Colour unwound - disentangling colours for azimuthal asymmetries in Drell-Yan scattering
Daniël Boer, Tom van Daal, Jonathan R. Gaunt, Tomas Kasemets, Piet J. Mulders
SciPost Phys. 3, 040 (2017) · published 19 December 2017
- doi: 10.21468/SciPostPhys.3.6.040
- Submissions/Reports
Abstract
It has been suggested that a colour-entanglement effect exists in the Drell-Yan cross section for the 'double T-odd' contributions at low transverse momentum $Q_T$, rendering the colour structure different from that predicted by the usual factorisation formula [1]. These T-odd contributions can come from the Boer-Mulders or Sivers transverse momentum dependent distribution functions. The different colour structure should be visible already at the lowest possible order that gives a contribution to the double Boer-Mulders (dBM) or double Sivers (dS) effect, that is at the level of two gluon exchanges. To discriminate between the different predictions, we compute the leading-power contribution to the low-$Q_T$ dBM cross section at the two-gluon exchange order in the context of a spectator model. The computation is performed using a method of regions analysis with Collins subtraction terms implemented. The results conform with the predictions of the factorisation formula. In the cancellation of the colour entanglement, diagrams containing the three-gluon vertex are essential. Furthermore, the Glauber region turns out to play an important role - in fact, it is possible to assign the full contribution to the dBM cross section at the given order to the region in which the two gluons have Glauber scaling. A similar disentanglement of colour is found for the dS effect.
Cited by 4
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 Daniël Boer,
- 2 3 Tom van Daal,
- 2 3 Jonathan Gaunt,
- 2 3 Tomas Kasemets,
- 2 3 Piet Mulders,
- Jonathan Gaunt
- 1 Rijksuniversiteit Groningen / University of Groningen [UG]
- 2 Nationaal instituut voor Subatomaire Fysica / National Institute for Subatomic Physics [NIKHEF]
- 3 Vrije Universiteit Amsterdam / VU University Amsterdam [VU]