Deconstructing little strings with $\mathcal{N}=1$ gauge theories on ellipsoids
Joseph Hayling, Rodolfo Panerai, Constantinos Papageorgakis
SciPost Phys. 4, 042 (2018) · published 28 June 2018
- doi: 10.21468/SciPostPhys.4.6.042
- Submissions/Reports
Abstract
A formula was recently proposed for the perturbative partition function of certain $\mathcal N=1$ gauge theories on the round four-sphere, using an analytic-continuation argument in the number of dimensions. These partition functions are not currently accessible via the usual supersymmetric-localisation technique. We provide a natural refinement of this result to the case of the ellipsoid. We then use it to write down the perturbative partition function of an $\mathcal N=1$ toroidal-quiver theory (a double orbifold of $\mathcal N=4$ super Yang-Mills) and show that, in the deconstruction limit, it reproduces the zero-winding contributions to the BPS partition function of (1,1) Little String Theory wrapping an emergent torus. We therefore successfully test both the expressions for the $\mathcal N=1$ partition functions, as well as the relationship between the toroidal-quiver theory and Little String Theory through dimensional deconstruction.
Cited by 6
Authors / Affiliation: mappings to Contributors and Organizations
See all Organizations.- Queen Mary, University of London (through Organization: Queen Mary University of London [QMUL])
- Royal Society