SciPost logo

Anomalies for Galilean fields

Kristan Jensen

SciPost Phys. 5, 005 (2018) · published 20 July 2018

Abstract

We initiate a systematic study of `t Hooft anomalies in Galilean field theories, focusing on two questions therein. In the first, we consider the non-relativistic theories obtained from a discrete light-cone quantization (DLCQ) of a relativistic theory with flavor or gravitational anomalies. We find that these anomalies survive the DLCQ, becoming mixed flavor/boost or gravitational/boost anomalies. We also classify the pure Weyl anomalies of Schr\"odinger theories, which are Galilean conformal field theories (CFTs) with $z=2$. There are no pure Weyl anomalies in even spacetime dimension, and the lowest-derivative anomalies in odd dimension are in one-to-one correspondence with those of a relativistic CFT in one dimension higher. These results classify many of the anomalies that arise in the field theories dual to string theory on Schr\"odinger spacetimes.

Cited by 12

Crossref Cited-by

Ontology / Topics

See full Ontology or Topics database.

't Hooft anomalies Anomalies Conformal field theory (CFT) Discrete light-cone quantization (DLCQ) Galilean field theories Gravitational anomalies Weyl anomalies

Author / Affiliation: mappings to Contributors and Organizations

See all Organizations.
Funder for the research work leading to this publication