SciPost logo

The complete scientific publication portal
Managed by professional scientists
For open, global and perpetual access to science

Thickening and sickening the SYK model

D. V. Khveshchenko

SciPost Phys. 5, 012 (2018) · published 30 July 2018


We discuss higher dimensional generalizations of the 0+1-dimensional Sachdev-Ye-Kitaev (SYK) model that has recently become the focus of intensive interdisciplinary studies by, both, the condensed matter and field-theoretical communities. Unlike the previous constructions where multiple SYK copies would be coupled to each other and/or hybridized with itinerant fermions via spatially short-ranged random hopping processes, we study algebraically varying long-range (spatially and/or temporally) correlated random couplings in the general d+1 dimensions. Such pertinent topics as translationally-invariant strong-coupling solutions, emergent reparametrization symmetry, effective action for fluctuations, chaotic behavior, and diffusive transport (or a lack thereof) are all addressed. We find that the most appealing properties of the original SYK model that suggest the existence of its 1+1-dimensional holographic gravity dual do not survive the aforementioned generalizations, thus lending no additional support to the hypothetical broad (including 'non-AdS/non-CFT') holographic correspondence.

Cited by 1

Toggle view
Crossref Cited-by

Author/Affiliation: mappings to Contributors and Organizations