The geometry of Casimir W-algebras

Raphaël Belliard, Bertrand Eynard, Sylvain Ribault

SciPost Phys. 5, 051 (2018) · published 23 November 2018

Abstract

Let $\mathfrak{g}$ be a simply laced Lie algebra, $\widehat{\mathfrak{g}}_1$ the corresponding affine Lie algebra at level one, and $\mathcal{W}(\mathfrak{g})$ the corresponding Casimir W-algebra. We consider $\mathcal{W}(\mathfrak{g})$-symmetric conformal field theory on the Riemann sphere. To a number of $\mathcal{W}(\mathfrak{g})$-primary fields, we associate a Fuchsian differential system. We compute correlation functions of $\widehat{\mathfrak{g}}_1$-currents in terms of solutions of that system, and construct the bundle where these objects live. We argue that cycles on that bundle correspond to parameters of the conformal blocks of the W-algebra, equivalently to moduli of the Fuchsian system.


Ontology / Topics

See full Ontology or Topics database.

Conformal field theory (CFT) Lie algebras and groups Quadratic Casimirs

Authors / Affiliations: mappings to Contributors and Organizations

See all Organizations.
Funders for the research work leading to this publication