QCD or what?
Theo Heimel, Gregor Kasieczka, Tilman Plehn, Jennifer M Thompson
SciPost Phys. 6, 030 (2019) · published 8 March 2019
- doi: 10.21468/SciPostPhys.6.3.030
- Submissions/Reports
-
Abstract
Autoencoder networks, trained only on QCD jets, can be used to search for anomalies in jet-substructure. We show how, based either on images or on 4-vectors, they identify jets from decays of arbitrary heavy resonances. To control the backgrounds and the underlying systematics we can de-correlate the jet mass using an adversarial network. Such an adversarial autoencoder allows for a general and at the same time easily controllable search for new physics. Ideally, it can be trained and applied to data in the same phase space region, allowing us to efficiently search for new physics using un-supervised learning.
TY - JOUR
PB - SciPost Foundation
DO - 10.21468/SciPostPhys.6.3.030
TI - QCD or what?
PY - 2019/03/08
UR - https://scipost.org/SciPostPhys.6.3.030
JF - SciPost Physics
JA - SciPost Phys.
VL - 6
IS - 3
SP - 030
A1 - Heimel, Theo
AU - Kasieczka, Gregor
AU - Plehn, Tilman
AU - Thompson, Jennifer
AB - Autoencoder networks, trained only on QCD jets, can be used to search for
anomalies in jet-substructure. We show how, based either on images or on
4-vectors, they identify jets from decays of arbitrary heavy resonances. To
control the backgrounds and the underlying systematics we can de-correlate the
jet mass using an adversarial network. Such an adversarial autoencoder allows
for a general and at the same time easily controllable search for new physics.
Ideally, it can be trained and applied to data in the same phase space region,
allowing us to efficiently search for new physics using un-supervised learning.
ER -
@Article{10.21468/SciPostPhys.6.3.030,
title={{QCD or What?}},
author={Theo Heimel and Gregor Kasieczka and Tilman Plehn and Jennifer M Thompson},
journal={SciPost Phys.},
volume={6},
issue={3},
pages={30},
year={2019},
publisher={SciPost},
doi={10.21468/SciPostPhys.6.3.030},
url={https://scipost.org/10.21468/SciPostPhys.6.3.030},
}
Cited by 74

-
Komiske et al., Exploring the space of jets with CMS open data
Phys. Rev. D 101, 034009 (2020) [Crossref] -
Komiske et al., The hidden geometry of particle collisions
J. High Energ. Phys. 2020, 6 (2020) [Crossref] -
Andreassen et al., Simulation assisted likelihood-free anomaly detection
Phys. Rev. D 101, 095004 (2020) [Crossref] -
Ngairangbam et al., Anomaly detection in high-energy physics using a quantum autoencoder
Phys. Rev. D 105, 095004 (2022) [Crossref] -
Kasieczka et al., The LHC Olympics 2020 a community challenge for anomaly detection in high energy physics
Rep. Prog. Phys. 84, 124201 (2021) [Crossref] -
Moreno et al., Interaction networks for the identification of boosted
H→bb¯
decays
Phys. Rev. D 102, 012010 (2020) [Crossref] -
Komiske et al., Metric Space of Collider Events
Phys. Rev. Lett. 123, 041801 (2019) [Crossref] -
Buhmann et al., Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed
Comput Softw Big Sci 5, 13 (2021) [Crossref] -
D’Agnolo et al., Learning multivariate new physics
Eur. Phys. J. C 81, 89 (2021) [Crossref] -
Fraser et al., Challenges for unsupervised anomaly detection in particle physics
J. High Energ. Phys. 2022, 66 (2022) [Crossref] -
Cerri et al., Variational autoencoders for new physics mining at the Large Hadron Collider
J. High Energ. Phys. 2019, 36 (2019) [Crossref] -
Blance et al., Adversarially-trained autoencoders for robust unsupervised new physics searches
J. High Energ. Phys. 2019, 47 (2019) [Crossref] -
Beauchesne et al., Searching for periodic signals in kinematic distributions using continuous wavelet transforms
Eur. Phys. J. C 80, 192 (2020) [Crossref] -
Gonski et al., High-dimensional anomaly detection with radiative return in e+e− collisions
J. High Energ. Phys. 2022, 156 (2022) [Crossref] -
Batson et al., Topological obstructions to autoencoding
J. High Energ. Phys. 2021, 280 (2021) [Crossref] -
Nachman et al., Anomaly detection with density estimation
Phys. Rev. D 101, 075042 (2020) [Crossref] -
Aarrestad et al., The Dark Machines Anomaly Score Challenge: Benchmark Data and Model Independent Event Classification for the Large Hadron Collider
SciPost Phys. 12, 043 (2022) [Crossref] -
Aad et al., Dijet Resonance Search with Weak Supervision Using
s=13 TeV
pp
Collisions in the ATLAS Detector
Phys. Rev. Lett. 125, 131801 (2020) [Crossref] -
Collins et al., Comparing weak- and unsupervised methods for resonant anomaly detection
Eur. Phys. J. C 81, 617 (2021) [Crossref] -
Cohen et al., Jet substructure from dark sector showers
J. High Energ. Phys. 2020, 118 (2020) [Crossref] -
Aguilar-Saavedra et al., Mass Unspecific Supervised Tagging (MUST) for boosted jets
J. High Energ. Phys. 2021, 12 (2021) [Crossref] -
Karagiorgi et al., Machine learning in the search for new fundamental physics
Nat Rev Phys, (2022) [Crossref] -
Amram et al., Tag N’ Train: a technique to train improved classifiers on unlabeled data
J. High Energ. Phys. 2021, 153 (2021) [Crossref] -
Dillon et al., Uncovering latent jet substructure
Phys. Rev. D 100, 056002 (2019) [Crossref] -
Canelli et al., Autoencoders for semivisible jet detection
J. High Energ. Phys. 2022, 74 (2022) [Crossref] -
Farina et al., Searching for new physics with deep autoencoders
Phys. Rev. D 101, 075021 (2020) [Crossref] -
Larkoski et al., A theory of quark vs. gluon discrimination
J. High Energ. Phys. 2019, 14 (2019) [Crossref] -
Bradshaw et al., Mass agnostic jet taggers
SciPost Phys. 8, 011 (2020) [Crossref] -
Dillon et al., Learning the latent structure of collider events
J. High Energ. Phys. 2020, 206 (2020) [Crossref] -
Aguilar-Saavedra et al., Multiphoton signals of a (96 GeV?) stealth boson
Eur. Phys. J. C 80, 403 (2020) [Crossref] -
Benkendorfer et al., Simulation-assisted decorrelation for resonant anomaly detection
Phys. Rev. D 104, 035003 (2021) [Crossref] -
Atkinson et al., Anomaly detection with convolutional Graph Neural Networks
J. High Energ. Phys. 2021, 80 (2021) [Crossref] -
Krupa et al., GPU coprocessors as a service for deep learning inference in high energy physics
Mach. Learn.: Sci. Technol. 2, 035005 (2021) [Crossref] -
Kasieczka et al., Per-object systematics using deep-learned calibration
SciPost Phys. 9, 089 (2020) [Crossref] -
Matchev et al., Finding wombling boundaries in LHC data with Voronoi and Delaunay tessellations
J. High Energ. Phys. 2020, 137 (2020) [Crossref] -
Aguilar-Saavedra et al., Exotic diboson $$Z'$$ decays in the U$$\mu \nu $$SSM
Eur. Phys. J. C 81, 805 (2021) [Crossref] -
Park et al., Quasi anomalous knowledge: searching for new physics with embedded knowledge
J. High Energ. Phys. 2021, 30 (2021) [Crossref] -
Aguilar-Saavedra et al., Jet tagging made easy
Eur. Phys. J. C 80, 530 (2020) [Crossref] -
Finke et al., Autoencoders for unsupervised anomaly detection in high energy physics
J. High Energ. Phys. 2021, 161 (2021) [Crossref] -
Chakraborty et al., Neural network-based top tagger with two-point energy correlations and geometry of soft emissions
J. High Energ. Phys. 2020, 111 (2020) [Crossref] -
Murphy, Class imbalance techniques for high energy physics
SciPost Phys. 7, 076 (2019) [Crossref] -
van Beekveld et al., Combining outlier analysis algorithms to identify new physics at the LHC
J. High Energ. Phys. 2021, 24 (2021) [Crossref] -
Kasieczka et al., Automating the ABCD method with machine learning
Phys. Rev. D 103, 035021 (2021) [Crossref] -
Knapen et al., Perturbative benchmark models for a dark shower search program
Phys. Rev. D 103, 115013 (2021) [Crossref] -
Mikuni et al., Online-compatible unsupervised nonresonant anomaly detection
Phys. Rev. D 105, 055006 (2022) [Crossref] -
Erdmann et al., Maximum performance of strange-jet tagging at hadron colliders
J. Inst. 16, P08039 (2021) [Crossref] -
Kasieczka et al., Quark-gluon tagging: Machine learning vs detector
SciPost Phys. 6, 069 (2019) [Crossref] -
Diefenbacher et al., CapsNets continuing the convolutional quest
SciPost Phys. 8, 023 (2020) [Crossref] -
Bollweg et al., Deep-learning jets with uncertainties and more
SciPost Phys. 8, 006 (2020) [Crossref] -
Knapp et al., Adversarially Learned Anomaly Detection on CMS open data: re-discovering the top quark
Eur. Phys. J. Plus 136, 236 (2021) [Crossref] -
Datta et al., Automating the construction of jet observables with machine learning
Phys. Rev. D 100, 095016 (2019) [Crossref] -
Bernreuther et al., Casting a graph net to catch dark showers
SciPost Phys. 10, 046 (2021) [Crossref] -
Thaprasop et al., Unsupervised outlier detection in heavy-ion collisions
Phys. Scr. 96, 064003 (2021) [Crossref] -
Jawahar et al., Improving Variational Autoencoders for New Physics Detection at the LHC With Normalizing Flows
Front. Big Data 5, 803685 (2022) [Crossref] -
D’Agnolo et al., Learning new physics from an imperfect machine
Eur. Phys. J. C 82, 275 (2022) [Crossref] -
Ostdiek, Deep Set Auto Encoders for Anomaly Detection in Particle Physics
SciPost Phys. 12, 045 (2022) [Crossref] -
Komiske et al., Preserving new physics while simultaneously unfolding all observables
Phys. Rev. D 104, 076027 (2021) [Crossref] -
Govorkova et al., Autoencoders on field-programmable gate arrays for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Collider
Nat Mach Intell 4, 154 (2022) [Crossref] -
Aguilar-Saavedra, Anomaly detection from mass unspecific jet tagging
Eur. Phys. J. C 82, 130 (2022) [Crossref] -
Aguilar-Saavedra et al., The minimal stealth boson: models and benchmarks
J. High Energ. Phys. 2019, 237 (2019) [Crossref] -
Herrero-Garcia et al., A semi-supervised approach to dark matter
searches in direct detection data with machine learning
J. Cosmol. Astropart. Phys. 2022, 039 (2022) [Crossref] -
Dolan et al., Equivariant energy flow networks for jet tagging
Phys. Rev. D 103, 074022 (2021) [Crossref] -
Aguilar-Saavedra, Taming modeling uncertainties with mass unspecific supervised tagging
Eur. Phys. J. C 82, 270 (2022) [Crossref] -
Yevick, Variational autoencoder analysis of Ising model statistical distributions and phase transitions
Eur. Phys. J. B 95, 56 (2022) [Crossref] -
Larkoski et al., Jet substructure at the Large Hadron Collider: A review of recent advances in theory and machine learning
Physics Reports 841, 1 (2020) [Crossref] -
Chakraborty et al., Interpretable deep learning for two-prong jet classification with jet spectra
J. High Energ. Phys. 2019, 135 (2019) [Crossref] -
Mullin et al., Does SUSY have friends? A new approach for LHC event analysis
J. High Energ. Phys. 2021, 160 (2021) [Crossref] -
Dillon et al., Better latent spaces for better autoencoders
SciPost Phys. 11, 061 (2021) [Crossref] -
Barron et al., Unsupervised hadronic SUEP at the LHC
J. High Energ. Phys. 2021, 129 (2021) [Crossref] -
Bhattacherjee et al., Study of energy deposition patterns in hadron calorimeter for prompt and displaced jets using convolutional neural network
J. High Energ. Phys. 2019, 156 (2019) [Crossref] -
Nachman, A guide for deploying Deep Learning in LHC searches: How to achieve optimality and account for uncertainty
SciPost Phys. 8, 090 (2020) [Crossref] -
Caron et al., Rare and Different: Anomaly Scores from a combination of likelihood and out-of-distribution models to detect new physics at the LHC
SciPost Phys. 12, 077 (2022) [Crossref] -
Kasieczka et al., The Machine Learning landscape of top taggers
SciPost Phys. 7, 014 (2019) [Crossref] -
Abdughani et al., Probing the triple Higgs boson coupling with machine learning at the LHC
Phys. Rev. D 104, 056003 (2021) [Crossref]
Ontology / Topics
See full Ontology or Topics database.Authors / Affiliation: mappings to Contributors and Organizations
See all Organizations.- 1 Theo Heimel,
- 1 Gregor Kasieczka,
- 1 Tilman Plehn,
- 1 Jennifer Thompson