SciPost logo

Bootstrapping MN and tetragonal CFTs in three dimensions

Andreas Stergiou

SciPost Phys. 7, 010 (2019) · published 17 July 2019

Abstract

Conformal field theories (CFTs) with MN and tetragonal global symmetry in $d=2+1$ dimensions are relevant for structural, antiferromagnetic and helimagnetic phase transitions. As a result, they have been studied in great detail with the $\varepsilon=4-d$ expansion and other field theory methods. The study of these theories with the nonperturbative numerical conformal bootstrap is initiated in this work. Bounds for operator dimensions are obtained and they are found to possess sharp kinks in the MN case, suggesting the existence of full-fledged CFTs. Based on the existence of a certain large-$N$ expansion in theories with MN symmetry, these are argued to be the CFTs predicted by the $\varepsilon$ expansion. In the tetragonal case no new kinks are found, consistently with the absence of such CFTs in the $\varepsilon$ expansion. Estimates for critical exponents are provided for a few cases describing phase transitions in actual physical systems. In two particular MN cases, corresponding to theories with global symmetry groups $O(2)^2\rtimes S_2$ and $O(2)^3\rtimes S_3$, a second kink is found. In the $O(2)^2\rtimes S_2$ case it is argued to be saturated by a CFT that belongs to a new universality class relevant for the structural phase transition of NbO$_2$ and paramagnetic-helimagnetic transitions of the rare-earth metals Ho and Dy. In the $O(2)^3\rtimes S_3$ case it is suggested that the CFT that saturates the second kink belongs to a new universality class relevant for the paramagnetic-antiferromagnetic phase transition of the rare-earth metal Nd.

Cited by 20

Crossref Cited-by

Author / Affiliation: mappings to Contributors and Organizations

See all Organizations.