Many-body chaos near a thermal phase transition
Alexander Schuckert, Michael Knap
SciPost Phys. 7, 022 (2019) · published 19 August 2019
- doi: 10.21468/SciPostPhys.7.2.022
- Submissions/Reports
Abstract
We study many-body chaos in a (2+1)D relativistic scalar field theory at high temperatures in the classical statistical approximation, which captures the quantum critical regime and the thermal phase transition from an ordered to a disordered phase. We evaluate out-of-time ordered correlation functions (OTOCs) and find that the associated Lyapunov exponent increases linearly with temperature in the quantum critical regime, and approaches the non-interacting limit algebraically in terms of a fluctuation parameter. OTOCs spread ballistically in all regimes, also at the thermal phase transition, where the butterfly velocity is maximal. Our work contributes to the understanding of the relation between quantum and classical many-body chaos and our method can be applied to other field theories dominated by classical modes at long wavelengths.
Cited by 7
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 2 Alexander Schuckert,
- 1 2 Michael Knap
- 1 Technische Universität München / Technical University of Munich [TUM]
- 2 Munich Center for Quantum Science and Technology [MCQST]
- Deutsche Forschungsgemeinschaft / German Research FoundationDeutsche Forschungsgemeinschaft [DFG]
- FP7 People: Marie-Curie Actions (FP7 People) (through Organization: European Commission [EC])
- Max-Planck-Gesellschaft zur Förderung der Wissenschaften / Max Planck Society [MPG]