Reproducing topological properties with quasiMajorana states
Adriaan Vuik, Bas Nijholt, Anton R. Akhmerov, Michael Wimmer
SciPost Phys. 7, 061 (2019) · published 12 November 2019
 doi: 10.21468/SciPostPhys.7.5.061
 Submissions/Reports
Abstract
Andreev bound states in hybrid superconductorsemiconductor devices can have nearzero energy in the topologically trivial regime as long as the confinement potential is sufficiently smooth. These quasiMajorana states show zerobias conductance features in a topologically trivial phase, mimicking spatially separated topological Majorana states. We show that in addition to the suppressed coupling between the quasiMajorana states, also the coupling of these states across a tunnel barrier to the outside is exponentially different for increasing magnetic field. As a consequence, quasiMajorana states mimic most of the proposed Majorana signatures: quantized zerobias peaks, the $4\pi$ Josephson effect, and the tunneling spectrum in presence of a normal quantum dot. We identify a quantized conductance dip instead of a peak in the open regime as a distinguishing feature of true Majorana states in addition to having a bulk topological transition. Because braiding schemes rely only on the ability to couple to individual Majorana states, the exponential control over coupling strengths allows to also use quasiMajorana states for braiding. Therefore, while the appearance of quasiMajorana states complicates the observation of topological Majorana states, it opens an alternative route towards braiding of nonAbelian anyons and protected quantum computation.
TY  JOUR
PB  SciPost Foundation
DO  10.21468/SciPostPhys.7.5.061
TI  Reproducing topological properties with quasiMajorana states
PY  2019/11/12
UR  https://scipost.org/SciPostPhys.7.5.061
JF  SciPost Physics
JA  SciPost Phys.
VL  7
IS  5
SP  061
A1  Vuik, Adriaan
AU  Nijholt, Bas
AU  Akhmerov, Anton R.
AU  Wimmer, Michael
AB  Andreev bound states in hybrid superconductorsemiconductor devices can have
nearzero energy in the topologically trivial regime as long as the confinement
potential is sufficiently smooth. These quasiMajorana states show zerobias
conductance features in a topologically trivial phase, mimicking spatially
separated topological Majorana states. We show that in addition to the
suppressed coupling between the quasiMajorana states, also the coupling of
these states across a tunnel barrier to the outside is exponentially different
for increasing magnetic field. As a consequence, quasiMajorana states mimic
most of the proposed Majorana signatures: quantized zerobias peaks, the $4\pi$
Josephson effect, and the tunneling spectrum in presence of a normal quantum
dot. We identify a quantized conductance dip instead of a peak in the open
regime as a distinguishing feature of true Majorana states in addition to
having a bulk topological transition. Because braiding schemes rely only on the
ability to couple to individual Majorana states, the exponential control over
coupling strengths allows to also use quasiMajorana states for braiding.
Therefore, while the appearance of quasiMajorana states complicates the
observation of topological Majorana states, it opens an alternative route
towards braiding of nonAbelian anyons and protected quantum computation.
ER 
@Article{10.21468/SciPostPhys.7.5.061,
title={{Reproducing topological properties with quasiMajorana states}},
author={Adriaan Vuik and Bas Nijholt and Anton R. Akhmerov and Michael Wimmer},
journal={SciPost Phys.},
volume={7},
pages={061},
year={2019},
publisher={SciPost},
doi={10.21468/SciPostPhys.7.5.061},
url={https://scipost.org/10.21468/SciPostPhys.7.5.061},
}
Cited by 116

Lai et al., Quality factor for zerobias conductance peaks in Majorana nanowire
Phys. Rev. B 106, 094504 (2022) [Crossref] 
Shvetsov et al., Magnetically stable zerobias anomaly in Andreev contact to the magnetic Weyl semimetal Co3Sn2S2
EPL 132, 67002 (2020) [Crossref] 
He et al., Disorderindependent topological superconductor realized by antiferromagnetic Rashba nanowires with superconducting proximity effect
Eur. Phys. J. Plus 137, 935 (2022) [Crossref] 
Rančić, Exactly solving the Kitaev chain and generating Majoranazeromodes out of noisy qubits
Sci Rep 12, 19882 (2022) [Crossref] 
Chuburin et al., Behavior of Andreev states for topological phase transition
Theor Math Phys 208, 977 (2021) [Crossref] 
Hess et al., Local and nonlocal quantum transport due to Andreev bound states in finite Rashba nanowires with superconducting and normal sections
Phys. Rev. B 104, 075405 (2021) [Crossref] 
Avila et al., Nonhermitian topology as a unifying framework for the Andreev versus Majorana states controversy
Commun Phys 2, 133 (2019) [Crossref] 
Woods et al., ChargeImpurity Effects in Hybrid Majorana Nanowires
Phys. Rev. Applied 16, 054053 (2021) [Crossref] 
Zhang et al., Next steps of quantum transport in Majorana nanowire devices
Nat Commun 10, 5128 (2019) [Crossref] 
Kejriwal et al., Nonlocal conductance and the detection of Majorana zero modes: Insights from von Neumann entropy
Phys. Rev. B 105, L161403 (2022) [Crossref] 
Schulenborg et al., Absence of supercurrent sign reversal in a topological junction with a quantum dot
Phys. Rev. B 101, 014512 (2020) [Crossref] 
Ávila et al., Majorana oscillations and parity crossings in semiconductor nanowirebased transmon qubits
Phys. Rev. Research 2, 033493 (2020) [Crossref] 
Fu et al., Experimental review on Majorana zeromodes in hybrid nanowires
Sci. China Phys. Mech. Astron. 64, 107001 (2021) [Crossref] 
Ricco et al., Interaction induced hybridization of Majorana zero modes in a coupled quantumdot–superconductingnanowire hybrid system
Phys. Rev. B 102, 165104 (2020) [Crossref] 
Duse et al., Role of dephasing on the conductance signatures of Majorana zero modes
J. Phys.: Condens. Matter 33, 365301 (2021) [Crossref] 
Zhang et al., Suppressing Andreev Bound State Zero Bias Peaks Using a Strongly Dissipative Lead
Phys. Rev. Lett. 128, 076803 (2022) [Crossref] 
Pöschl et al., Nonlocal signatures of hybridization between quantum dot and Andreev bound states
Phys. Rev. B 106, L161301 (2022) [Crossref] 
Pan et al., Threeterminal nonlocal conductance in Majorana nanowires: Distinguishing topological and trivial in realistic systems with disorder and inhomogeneous potential
Phys. Rev. B 103, 014513 (2021) [Crossref] 
Marra et al., Majorana/Andreev crossover and the fate of the topological phase transition in inhomogeneous nanowires
J. Phys.: Condens. Matter 34, 124001 (2022) [Crossref] 
Cayao et al., Distinguishing trivial and topological zeroenergy states in long nanowire junctions
Phys. Rev. B 104, L020501 (2021) [Crossref] 
Min et al., Dynamical approach to improving Majorana qubits and distinguishing them from trivial bound states
Phys. Rev. B 105, 155412 (2022) [Crossref] 
Yao et al., The differential conductance tunnel spectroscopy in an analytical solvable twoterminal Majorana device
New J. Phys. 24, 073015 (2022) [Crossref] 
Lesser et al., Onedimensional topological superconductivity based entirely on phase control
Phys. Rev. B 106, L241405 (2022) [Crossref] 
Woods et al., Enhanced topological protection in planar quasionedimensional channels with periodically modulated width
Phys. Rev. B 101, 195435 (2020) [Crossref] 
Khindanov et al., Visibility of noisy quantum dotbased measurements of Majorana qubits
SciPost Phys. 10, 127 (2021) [Crossref] 
Zeng et al., Partially separated Majorana modes in a disordered medium
Phys. Rev. B 105, 205122 (2022) [Crossref] 
Pan et al., Quantized and unquantized zerobias tunneling conductance peaks in Majorana nanowires: Conductance below and above
2e2/h
Phys. Rev. B 103, 214502 (2021) [Crossref] 
Papaj et al., Creating Majorana modes from segmented Fermi surface
Nat Commun 12, 577 (2021) [Crossref] 
Puglia et al., Closing of the induced gap in a hybrid superconductorsemiconductor nanowire
Phys. Rev. B 103, 235201 (2021) [Crossref] 
Kotetes, Diagnosing topological phase transitions in 1D superconductors using Berry singularity markers
J. Phys.: Condens. Matter 34, 174003 (2022) [Crossref] 
Zhang et al., Distinguishing between topological and quasi Majorana zero modes with a dissipative resonant level
Phys. Rev. B 102, 045111 (2020) [Crossref] 
Awoga et al., Robust topological superconductivity in weakly coupled nanowiresuperconductor hybrid structures
Phys. Rev. B 105, 144509 (2022) [Crossref] 
Woods et al., Subband occupation in semiconductorsuperconductor nanowires
Phys. Rev. B 101, 045405 (2020) [Crossref] 
Luethi et al., Planar Josephson junctions in germanium: Effect of cubic spinorbit interaction
Phys. Rev. B 107, 035435 (2023) [Crossref] 
Pan et al., Physical mechanisms for zerobias conductance peaks in Majorana nanowires
Phys. Rev. Research 2, 013377 (2020) [Crossref] 
Munk et al., Paritytocharge conversion in Majorana qubit readout
Phys. Rev. Research 2, 033254 (2020) [Crossref] 
Marra, Majorana nanowires for topological quantum computation
Journal of Applied Physics 132, 231101 (2022) [Crossref] 
Liu et al., Revealing the nonlocal coherent nature of Majorana devices from dissipative teleportation
Phys. Rev. B 101, 081406 (2020) [Crossref] 
Ménard et al., ConductanceMatrix Symmetries of a ThreeTerminal Hybrid Device
Phys. Rev. Lett. 124, 036802 (2020) [Crossref] 
Mondal et al., Topological characterization and stability of Floquet Majorana modes in Rashba nanowires
Phys. Rev. B 107, 035427 (2023) [Crossref] 
Schuray et al., Transport signatures of Majorana bound states in superconducting hybrid structures
Eur. Phys. J. Spec. Top. 229, 593 (2020) [Crossref] 
Thamm et al., Transmission amplitude through a Coulomb blockaded Majorana wire
Phys. Rev. Research 3, 023221 (2021) [Crossref] 
Liu et al., NonHermiticitystabilized Majorana zero modes in semiconductorsuperconductor nanowires
Phys. Rev. B 106, 064505 (2022) [Crossref] 
Califrer et al., Proximityinduced zeroenergy states indistinguishable from topological edge states
Phys. Rev. B 107, 045401 (2023) [Crossref] 
Grivnin et al., Concomitant opening of a bulkgap with an emerging possible Majorana zero mode
Nat Commun 10, 1940 (2019) [Crossref] 
Zhuang et al., Anomalous photonassisted tunneling in periodically driven Majorana nanowires and BCS charge measurement
Phys. Rev. B 105, 165148 (2022) [Crossref] 
Danon et al., Nonlocal Conductance Spectroscopy of Andreev Bound States: Symmetry Relations and BCS Charges
Phys. Rev. Lett. 124, 036801 (2020) [Crossref] 
Sharma et al., Hybridization energy oscillations of Majorana and Andreev bound states in semiconductorsuperconductor nanowire heterostructures
Phys. Rev. B 101, 245405 (2020) [Crossref] 
Plekhanov et al., Quadrupole spin polarization as signature of secondorder topological superconductors
Phys. Rev. B 103, L041401 (2021) [Crossref] 
Esin et al., Coalescence of Andreev Bound States on the Surface of a Chiral Topological Semimetal
Jetp Lett. 113, 662 (2021) [Crossref] 
Yu et al., Majorana quasiparticles and superconductorsemiconductor hybrid nanowires
Acta Phys. Sin. 69, 077303 (2020) [Crossref] 
Cayao et al., Confinementinduced zerobias peaks in conventional superconductor hybrids
Phys. Rev. B 104, 134507 (2021) [Crossref] 
Li et al., Nonlocality of Majorana zero modes and teleportation: Selfconsistent treatment based on the Bogoliubov–de Gennes equation
Phys. Rev. B 101, 205401 (2020) [Crossref] 
Nitsch et al., Interference and parity blockade in transport through a Majorana box
Phys. Rev. B 106, L201305 (2022) [Crossref] 
Tan et al., Quantized Majorana pump in semiconductorsuperconductor heterostructures
Phys. Rev. B 103, 195407 (2021) [Crossref] 
Jin et al., Master equation approach for transport through Majorana zero modes
New J. Phys. 24, 093009 (2022) [Crossref] 
He et al., Nonequilibrium interplay between Andreev bound states and Kondo effect
Phys. Rev. B 102, 075121 (2020) [Crossref] 
Lin et al., NonAbelian operation through scattering between chiral Dirac edge modes
Phys. Rev. B 105, 205428 (2022) [Crossref] 
Chen et al., NonAbelian statistics of Majorana zero modes in the presence of an Andreev bound state
Phys. Rev. B 105, 054507 (2022) [Crossref] 
Liu et al., Josephson current via an isolated Majorana zero mode
Phys. Rev. B 103, 014510 (2021) [Crossref] 
Hao et al., Anomalous universal conductance as a hallmark of nonlocality in a Majoranahosted superconducting island
Nat Commun 13, 6699 (2022) [Crossref] 
Traverso et al., Effects of the Vertices on the Topological Bound States in a Quasicrystalline Topological Insulator
Symmetry 14, 1736 (2022) [Crossref] 
Das Sarma et al., Disorderinduced zerobias peaks in Majorana nanowires
Phys. Rev. B 103, 195158 (2021) [Crossref] 
Pan et al., Crossover between trivial zero modes in Majorana nanowires
Phys. Rev. B 104, 054510 (2021) [Crossref] 
Liu et al., Universal Conductance Scaling of Andreev Reflections Using a Dissipative Probe
Phys. Rev. Lett. 128, 076802 (2022) [Crossref] 
Feng et al., Distinguishing Majorana and Andreev bound states in a topological superconducting nanowire with a potential barrier
Physica E: Lowdimensional Systems and Nanostructures 141, 115247 115247 (2022) [Crossref] 
Zeng et al., Feasibility of measurementbased braiding in the quasiMajorana regime of semiconductorsuperconductor heterostructures
Phys. Rev. B 102, 205101 (2020) [Crossref] 
Valentini et al., Nontopological zerobias peaks in fullshell nanowires induced by fluxtunable Andreev states
Science 373, 82 (2021) [Crossref] 
Boutin et al., Topological Josephson bifurcation amplifier: Semiclassical theory
Journal of Applied Physics 129, 214302 (2021) [Crossref] 
Schuray et al., Signatures of the Majorana spin in electrical transport through a Majorana nanowire
Phys. Rev. B 102, 045303 (2020) [Crossref] 
Dai et al., Interaction induced modifications of the fractional Josephson effect
Solid State Communications 343, 114631 114631 (2022) [Crossref] 
Tsintzis et al., Creating and detecting poor man's Majorana bound states in interacting quantum dots
Phys. Rev. B 106, L201404 (2022) [Crossref] 
Mishmash et al., Dephasing and leakage dynamics of noisy Majoranabased qubits: Topological versus Andreev
Phys. Rev. B 101, 075404 (2020) [Crossref] 
Souto et al., Multiterminal transport spectroscopy of subgap states in Coulombblockaded superconductors
Phys. Rev. B 106, 235425 (2022) [Crossref] 
Prada et al., From Andreev to Majorana bound states in hybrid superconductor–semiconductor nanowires
Nat Rev Phys 2, 575 (2020) [Crossref] 
Sticlet et al., Allelectrical spectroscopy of topological phases in semiconductorsuperconductor heterostructures
Phys. Rev. B 102, 075437 (2020) [Crossref] 
Liu et al., Topological Kondo device for distinguishing quasiMajorana and Majorana signatures
Phys. Rev. B 104, 205125 (2021) [Crossref] 
Song et al., Large zero bias peaks and dips in a fourterminal thin InAsAl nanowire device
Phys. Rev. Research 4, 033235 (2022) [Crossref] 
Hess et al., Prevalence of trivial zeroenergy subgap states in nonuniform helical spin chains on the surface of superconductors
Phys. Rev. B 106, 104503 (2022) [Crossref] 
Wang et al., Parametric exploration of zeroenergy modes in threeterminal InSbAl nanowire devices
Phys. Rev. B 106, 075306 (2022) [Crossref] 
Pan et al.,
In Situ Epitaxy of Pure Phase UltraThin InAsAl Nanowires for Quantum Devices
Chinese Phys. Lett. 39, 058101 (2022) [Crossref] 
Sakurai et al., Nodal Andreev spectra in multiMajorana threeterminal Josephson junctions
Phys. Rev. B 101, 174506 (2020) [Crossref] 
Kurilovich et al., Quantum critical dynamics of a Josephson junction at the topological transition
Phys. Rev. B 104, 014509 (2021) [Crossref] 
Ricco et al., Topological isoconductance signatures in Majorana nanowires
Sci Rep 11, 17310 (2021) [Crossref] 
Chen et al., Carbon nanotube resonator enhancement of Majorana fermions induced slow light in a hybrid semiconductor/superconductor device
Jpn. J. Appl. Phys. 61, 082001 (2022) [Crossref] 
Heedt et al., Shadowwall lithography of ballistic superconductor–semiconductor quantum devices
Nat Commun 12, 4914 (2021) [Crossref] 
Ricco et al., Reshaping the JaynesCummings ladder with Majorana bound states
Phys. Rev. A 106, 023702 (2022) [Crossref] 
Fu et al., Waiting time distributions of the electron transport in a quantum dot coupled to a Majorana bound state
Physica E: Lowdimensional Systems and Nanostructures 146, 115515 115515 (2023) [Crossref] 
Perrin et al., Identifying Majorana bound states by tunneling shotnoise tomography
Phys. Rev. B 104, L121406 (2021) [Crossref] 
Ricco et al., Accessing the degree of Majorana nonlocality in a quantum dotoptical microcavity system
Sci Rep 12, 1983 (2022) [Crossref] 
Cao et al., Numerical study of PbTePb hybrid nanowires for engineering Majorana zero modes
Phys. Rev. B 105, 085424 (2022) [Crossref] 
Pan et al., Generic quantized zerobias conductance peaks in superconductorsemiconductor hybrid structures
Phys. Rev. B 101, 024506 (2020) [Crossref] 
Mao et al., Charge and spin transport through a normal lead coupled to an
s
wave superconductor and a Majorana zero mode
Phys. Rev. B 103, 115411 (2021) [Crossref] 
Manousakis et al., Weak Measurement Protocols for Majorana Bound State Identification
Phys. Rev. Lett. 124, 096801 (2020) [Crossref] 
Steffensen et al., Trapping Majorana zero modes in vortices of magnetic texture crystals coupled to nodal superconductors
Phys. Rev. B 104, 174502 (2021) [Crossref] 
Aksenov, Manifestation of Majorana modes overlap in the Aharonov–Bohm effect
J. Phys.: Condens. Matter 34, 255301 (2022) [Crossref] 
Tinyukova et al., The Role of MajoranaLike Bound States in the Andreev Reflection and the Josephson Effect in the Case of a Topological Insulator
Theor Math Phys 202, 72 (2020) [Crossref] 
Leumer et al., Linear and nonlinear transport across a finite Kitaev chain: An exact analytical study
Phys. Rev. B 103, 165432 (2021) [Crossref] 
Vaitiekėnas et al., Fluxinduced topological superconductivity in fullshell nanowires
Science 367, eaav3392 (2020) [Crossref] 
Pekerten et al., Fermion parity switches of the ground state of Majorana billiards
Phys. Rev. B 100, 235455 (2019) [Crossref] 
Cao et al., Probing electronhole weights of an Andreev bound state by transient currents
Phys. Rev. B 106, 075416 (2022) [Crossref] 
Lai et al., Theory of Coulomb blockaded transport in realistic Majorana nanowires
Phys. Rev. B 104, 085403 (2021) [Crossref] 
Barman Ray et al., Symmetrybreaking signatures of multiple Majorana zero modes in onedimensional spintriplet superconductors
Phys. Rev. B 104, 104513 (2021) [Crossref] 
Vaitiekėnas et al., Zerobias peaks at zero magnetic field in ferromagnetic hybrid nanowires
Nat. Phys. 17, 43 (2021) [Crossref] 
Wang et al., Large Andreev bound state zerobias peaks in a weakly dissipative environment
Phys. Rev. B 106, 205421 (2022) [Crossref] 
Bittermann et al., Probing Majorana bound states via a
pn
junction containing a quantum dot
Phys. Rev. B 106, 075305 (2022) [Crossref] 
Tian et al., Distinguishing Majorana and quasiMajorana bound states in a hybrid superconductorsemiconductor nanowire with inhomogeneous potential barriers
Results in Physics 26, 104273 104273 (2021) [Crossref] 
Buccheri et al., Violation of the WiedemannFranz law in the topological Kondo model
Phys. Rev. B 105, L081403 (2022) [Crossref] 
Seoane Souto et al., Fusion rules in a Majorana singlecharge transistor
SciPost Phys. 12, 161 (2022) [Crossref] 
Sau et al.,
108, 125 (2021) [Crossref] 
Okuma et al., Quantum anomaly, nonHermitian skin effects, and entanglement entropy in open systems
Phys. Rev. B 103, 085428 (2021) [Crossref] 
Frolov et al., Topological superconductivity in hybrid devices
Nat. Phys. 16, 718 (2020) [Crossref] 
Chiburin et al., Mutual transition of Andreev and Majorana bound states in a superconducting gap
Theor Math Phys 205, 1666 (2020) [Crossref] 
Manna et al., Signature of a pair of Majorana zero modes in superconducting gold surface states
Proc. Natl. Acad. Sci. U.S.A. 117, 8775 (2020) [Crossref] 
Wang et al., Plateau Regions for ZeroBias Peaks within 5% of the Quantized Conductance Value
2e2/h
Phys. Rev. Lett. 129, 167702 (2022) [Crossref] 
Yu et al., NonMajorana states yield nearly quantized conductance in proximatized nanowires
Nat. Phys. 17, 482 (2021) [Crossref]
Ontology / Topics
See full Ontology or Topics database.Authors / Affiliation: mappings to Contributors and Organizations
See all Organizations. ^{1} Adriaan Vuik,
 ^{1} Bas Nijholt,
 ^{1} Anton R. Akhmerov,
 ^{1} Michael Wimmer