SciPost logo

Time dependent variational principle for tree Tensor Networks

Daniel Bauernfeind, Markus Aichhorn

SciPost Phys. 8, 024 (2020) · published 7 February 2020

Abstract

We present a generalization of the Time Dependent Variational Principle (TDVP) to any finite sized loop-free tensor network. The major advantage of TDVP is that it can be employed as long as a representation of the Hamiltonian in the same tensor network structure that encodes the state is available. Often, such a representation can be found also for long-range terms in the Hamiltonian. As an application we use TDVP for the Fork Tensor Product States tensor network for multi-orbital Anderson impurity models. We demonstrate that TDVP allows to account for off-diagonal hybridizations in the bath which are relevant when spin-orbit coupling effects are important, or when distortions of the crystal lattice are present.

Cited by 36

Crossref Cited-by

Authors / Affiliation: mappings to Contributors and Organizations

See all Organizations.
Funder for the research work leading to this publication