Renormalization to localization without a small parameter

Anton G. Kutlin, Ivan M. Khaymovich

SciPost Phys. 8, 049 (2020) · published 1 April 2020


We study the wave function localization properties in a d-dimensional model of randomly spaced particles with isotropic hopping potential depending solely on Euclidean interparticle distances. Due to the generality of this model usually called the Euclidean random matrix model, it arises naturally in various physical contexts such as studies of vibrational modes, artificial atomic systems, liquids and glasses, ultracold gases and photon localization phenomena. We generalize the known Burin-Levitov renormalization group approach, formulate universal conditions sufficient for localization in such models and inspect a striking equivalence of the wave function spatial decay between Euclidean random matrices and translation-invariant long-range lattice models with a diagonal disorder.

Cited by 1

Crossref Cited-by

Ontology / Topics

See full Ontology or Topics database.

Localization Random matrix theory (RMT)

Authors / Affiliation: mappings to Contributors and Organizations

See all Organizations.
Funders for the research work leading to this publication