Field theories with a vector global symmetry
Nathan Seiberg
SciPost Phys. 8, 050 (2020) · published 3 April 2020
- doi: 10.21468/SciPostPhys.8.4.050
- Submissions/Reports
-
Abstract
Motivated by recent discussions of fractons, we explore nonrelativistic field theories with a continuous global symmetry, whose charge is a spatial vector. We present several such symmetries and demonstrate them in concrete examples. They differ by the equations their Noether currents satisfy. Simple cases, other than the translation symmetry, are an ordinary (relativistic) one-form global symmetry and its nonrelativistic generalization. In the latter case the conserved charge is associated with a codimension-one spatial manifold, but it is not topological. More general examples involve charges that are integrated over the entire space. We also discuss the coupling of these systems to gauge fields for these symmetries. We relate our examples to known continuum and lattice constructions.
TY - JOUR
PB - SciPost Foundation
DO - 10.21468/SciPostPhys.8.4.050
TI - Field theories with a vector global symmetry
PY - 2020/04/03
UR - https://scipost.org/SciPostPhys.8.4.050
JF - SciPost Physics
JA - SciPost Phys.
VL - 8
IS - 4
SP - 050
A1 - Seiberg, Nathan
AB - Motivated by recent discussions of fractons, we explore nonrelativistic field theories with a continuous global symmetry, whose charge is a spatial vector. We present several such symmetries and demonstrate them in concrete examples. They differ by the equations their Noether currents satisfy. Simple cases, other than the translation symmetry, are an ordinary (relativistic) one-form global symmetry and its nonrelativistic generalization. In the latter case the conserved charge is associated with a codimension-one spatial manifold, but it is not topological. More general examples involve charges that are integrated over the entire space. We also discuss the coupling of these systems to gauge fields for these symmetries. We relate our examples to known continuum and lattice constructions.
ER -
@Article{10.21468/SciPostPhys.8.4.050,
title={{Field theories with a vector global symmetry}},
author={Nathan Seiberg},
journal={SciPost Phys.},
volume={8},
pages={050},
year={2020},
publisher={SciPost},
doi={10.21468/SciPostPhys.8.4.050},
url={https://scipost.org/10.21468/SciPostPhys.8.4.050},
}
Cited by 86

-
Manoj et al., Fractonic View of Folding and Tearing Paper: Elasticity of Plates Is Dual to a Gauge Theory with Vector Charges
Phys. Rev. Lett. 127, 067601 (2021) [Crossref] -
Figueroa-O’Farrill et al., Quantum Carroll/fracton particles
J. High Energ. Phys. 2023, 41 (2023) [Crossref] -
Han et al., Realization of fractonic quantum phases in the breathing pyrochlore lattice
Phys. Rev. B 105, 235120 (2022) [Crossref] -
Brauner, Field theories with higher-group symmetry from composite currents
J. High Energ. Phys. 2021, 45 (2021) [Crossref] -
Honda et al., Scalar, fermionic and supersymmetric field theories with subsystem symmetries in d + 1 dimensions
J. High Energ. Phys. 2023, 188 (2023) [Crossref] -
Yamaguchi, Supersymmetric quantum field theory with exotic symmetry in 3+1 dimensions and fermionic fracton phases
2021, 063B04 (2021) [Crossref] -
Phillips et al.,
335, 135 (2020) [Crossref] -
Du et al., Volume-preserving diffeomorphism as nonabelian higher-rank gauge symmetry
SciPost Phys. 12, 050 (2022) [Crossref] -
Gorantla et al., fcc lattice, checkerboards, fractons, and quantum field theory
Phys. Rev. B 103, 205116 (2021) [Crossref] -
Razamat, Quivers and Fractons
Phys. Rev. Lett. 127, 141603 (2021) [Crossref] -
Choi et al., Noninvertible duality defects in
3+1
dimensions
Phys. Rev. D 105, 125016 (2022) [Crossref] -
Ning et al., Fractionalizing global symmetry on looplike topological excitations
Phys. Rev. B 105, 205137 (2022) [Crossref] -
Bidussi et al., Fractons, dipole symmetries and curved spacetime
SciPost Phys. 12, 205 (2022) [Crossref] -
Zhou et al., Detecting subsystem symmetry protected topological order through strange correlators
Phys. Rev. B 106, 214428 (2022) [Crossref] -
Ohmori et al., Foliated-exotic duality in fractonic BF theories
SciPost Phys. 14, 164 (2023) [Crossref] -
Gorantla et al., Gapped lineon and fracton models on graphs
Phys. Rev. B 107, 125121 (2023) [Crossref] -
Gromov et al., Fracton hydrodynamics
Phys. Rev. Research 2, 033124 (2020) [Crossref] -
Grosvenor et al., Hydrodynamics of ideal fracton fluids
Phys. Rev. Research 3, 043186 (2021) [Crossref] -
Fontana et al., Field Theories for type-II fractons
SciPost Phys. 12, 064 (2022) [Crossref] -
Pérez et al., Asymptotic symmetries and soft charges of fractons
Phys. Rev. D 106, 044017 (2022) [Crossref] -
Lake et al., Dipolar Bose-Hubbard model
Phys. Rev. B 106, 064511 (2022) [Crossref] -
Zhu et al., Topological Fracton Quantum Phase Transitions by Tuning Exact Tensor Network States
Phys. Rev. Lett. 130, 216704 (2023) [Crossref] -
Yuan et al., Quantum Hydrodynamics of Fractonic Superfluids with Lineon Condensate: From Navier–Stokes-Like Equations to Landau-Like Criterion
Chinese Phys. Lett. 39, 057101 (2022) [Crossref] -
Cremonini et al., Surface operators in superspace
J. High Energ. Phys. 2020, 50 (2020) [Crossref] -
Seiberg et al., Exotic symmetries, duality, and fractons in 2+1-dimensional quantum field theory
SciPost Phys. 10, 027 (2021) [Crossref] -
Biswas et al., Scars from protected zero modes and beyond in $U(1)$ quantum link and quantum dimer models
SciPost Phys. 12, 148 (2022) [Crossref] -
Stahl et al., Spontaneous breaking of multipole symmetries
Phys. Rev. B 105, 155107 (2022) [Crossref] -
Luo et al., Boundary theory of the X-cube model in the continuum
Phys. Rev. B 106, 195102 (2022) [Crossref] -
Luo, Gapped boundaries of
(3+1)
-dimensional topological order
Phys. Rev. B 107, 125425 (2023) [Crossref] -
Dubinkin et al., Higher-form gauge symmetries in multipole topological phases
Annals of Physics 422, 168297 168297 (2020) [Crossref] -
Gorantla et al., More exotic field theories in 3+1 dimensions
SciPost Phys. 9, 073 (2020) [Crossref] -
Yuan et al., Fractonic superfluids
Phys. Rev. Research 2, 023267 (2020) [Crossref] -
Jian et al., Physics of symmetry protected topological phases involving higher symmetries and its applications
Phys. Rev. B 103, 064426 (2021) [Crossref] -
Rudelius et al., Fractons with twisted boundary conditions and their symmetries
Phys. Rev. B 103, 195113 (2021) [Crossref] -
Slagle, Foliated Quantum Field Theory of Fracton Order
Phys. Rev. Lett. 126, 101603 (2021) [Crossref] -
May-Mann et al., Topological dipole conserving insulators and multipolar responses
Phys. Rev. B 104, 085136 (2021) [Crossref] -
Cao et al., Boson-fermion duality with subsystem symmetry
Phys. Rev. B 106, 075150 (2022) [Crossref] -
Banerjee et al., Shift symmetries and duality web in gauge theories
Nuclear Physics B 996, 116354 116354 (2023) [Crossref] -
Wang et al., Higher-rank tensor non-Abelian field theory: Higher-moment or subdimensional polynomial global symmetry, algebraic variety, Noether's theorem, and gauging
Phys. Rev. Research 3, 013185 (2021) [Crossref] -
Banerjee, Hamiltonian formulation of higher rank symmetric gauge theories
Eur. Phys. J. C 82, 22 (2022) [Crossref] -
Burnell et al., Anomaly inflow for subsystem symmetries
Phys. Rev. B 106, 085113 (2022) [Crossref] -
Seiberg et al., Exotic $U(1)$ symmetries, duality, and fractons in 3+1-dimensional quantum field theory
SciPost Phys. 9, 046 (2020) [Crossref] -
Stahl, Self-Correction from Higher-Form Symmetry Protection on a Boundary
PRX Quantum 4, 030341 (2023) [Crossref] -
Angus et al., Fractons, non-Riemannian geometry, and double field theory
Phys. Rev. Research 4, 033186 (2022) [Crossref] -
Rayhaun et al., Higher-form subsystem symmetry breaking: Subdimensional criticality and fracton phase transitions
SciPost Phys. 15, 017 (2023) [Crossref] -
Qi et al., Anomalous hydrodynamics with triangular point group in
2+1
dimensions
Phys. Rev. B 107, 144305 (2023) [Crossref] -
McGreevy, Generalized Symmetries in Condensed Matter
Annu. Rev. Condens. Matter Phys. 14, 57 (2023) [Crossref] -
Yamaguchi, Gapless edge modes in (4+1)-dimensional topologically massive tensor gauge theory and anomaly inflow for subsystem symmetry
2022, 033B08 (2022) [Crossref] -
Dedushenko, Snowmass white paper: The quest to define QFT
Int. J. Mod. Phys. A 38, 2330002 (2023) [Crossref] -
Kaya et al., Higher-group symmetries and weak gravity conjecture mixing
J. High Energ. Phys. 2022, 40 (2022) [Crossref] -
Myerson-Jain et al., Multicritical point with infinite fractal symmetries
Phys. Rev. B 106, 115130 (2022) [Crossref] -
Craig, Naturalness: past, present, and future
Eur. Phys. J. C 83, 825 (2023) [Crossref] -
Gliozzi et al., Hierarchical hydrodynamics in long-range multipole-conserving systems
Phys. Rev. B 108, 195106 (2023) [Crossref] -
Duan et al., ℤN duality and parafermions revisited
J. High Energ. Phys. 2023, 206 (2023) [Crossref] -
Devakul et al., Fractalizing quantum codes
Quantum 5, 438 438 (2021) [Crossref] -
Seiberg et al., Exotic $\mathbb{Z}_N$ symmetries, duality, and fractons in 3+1-dimensional quantum field theory
SciPost Phys. 10, 003 (2021) [Crossref] -
Gorantla et al., Global dipole symmetry, compact Lifshitz theory, tensor gauge theory, and fractons
Phys. Rev. B 106, 045112 (2022) [Crossref] -
Geng et al., Fractons and Exotic Symmetries from Branes
Fortschritte der Physik 69, 2100133 (2021) [Crossref] -
Grosvenor et al., Space-Dependent Symmetries and Fractons
Front. Phys. 9, 792621 (2022) [Crossref] -
Zhou et al., Evolution of dynamical signature in the X-cube fracton topological order
Phys. Rev. Research 4, 033111 (2022) [Crossref] -
Fuji et al., Bridging three-dimensional coupled-wire models and cellular topological states: Solvable models for topological and fracton orders
Phys. Rev. Research 5, 043108 (2023) [Crossref] -
Gorantla et al., (2+1)-dimensional compact Lifshitz theory, tensor gauge theory, and fractons
Phys. Rev. B 108, 075106 (2023) [Crossref] -
Gorantla et al., Fractons on graphs and complexity
Phys. Rev. B 106, 195139 (2022) [Crossref] -
Tantivasadakarn, Jordan-Wigner dualities for translation-invariant Hamiltonians in any dimension: Emergent fermions in fracton topological order
Phys. Rev. Research 2, 023353 (2020) [Crossref] -
Osborne et al., Infinite families of fracton fluids with momentum conservation
Phys. Rev. B 105, 024311 (2022) [Crossref] -
Chen et al., Fractonic superfluids. II. Condensing subdimensional particles
Phys. Rev. Research 3, 013226 (2021) [Crossref] -
Jian et al., Note on generalized symmetries, gapless excitations, generalized symmetry protected topological states, and anomaly
J. Stat. Mech. 2021, 033102 (2021) [Crossref] -
Distler et al., Spontaneously broken subsystem symmetries
J. High Energ. Phys. 2022, 16 (2022) [Crossref] -
Wu et al., Categorical symmetries at criticality
J. Stat. Mech. 2021, 073101 (2021) [Crossref] -
Gorantla et al., A modified Villain formulation of fractons and other exotic theories
62, 102301 (2021) [Crossref] -
Marsot et al., Hall motions in Carroll dynamics
Physics Reports 1028, 1 (2023) [Crossref] -
Qi et al., Fracton phases via exotic higher-form symmetry-breaking
Annals of Physics 424, 168360 168360 (2021) [Crossref] -
Manoj et al., Arboreal topological and fracton phases
Phys. Rev. B 107, 165136 (2023) [Crossref] -
Wang et al., Non-Abelian gauged fracton matter field theory: Sigma models, superfluids, and vortices
Phys. Rev. Research 2, 043219 (2020) [Crossref] -
Distler et al., Interacting fractons in 2+1-dimensional quantum field theory
J. High Energ. Phys. 2022, 70 (2022) [Crossref] -
Gomes, An introduction to higher-form symmetries
SciPost Phys. Lect. Notes, 74 (2023) [Crossref] -
Gorantla et al., Low-energy limit of some exotic lattice theories and UV/IR mixing
Phys. Rev. B 104, 235116 (2021) [Crossref] -
Sullivan et al., Planar p-string condensation: Chiral fracton phases from fractional quantum Hall layers and beyond
Phys. Rev. B 103, 205301 (2021) [Crossref] -
Song et al., Topological Defect Network Representations of Fracton Stabilizer Codes
PRX Quantum 4, 010304 (2023) [Crossref] -
Xu et al., Deconfined quantum critical point with nonlocality
Phys. Rev. B 106, 155131 (2022) [Crossref] -
Aasen et al., Topological defect networks for fractons of all types
Phys. Rev. Research 2, 043165 (2020) [Crossref] -
Sullivan et al., Fractonic topological phases from coupled wires
Phys. Rev. Research 3, 023123 (2021) [Crossref] -
Banerjee, Dual description of gauge theories from an iterative Noether approach
Nuclear Physics B 981, 115875 115875 (2022) [Crossref] -
Fontana et al., Lattice Clifford fractons and their Chern-Simons-like theory
SciPost Phys. Core 4, 012 (2021) [Crossref] -
Gerhardinger et al., Well-posed UV completion for simulating scalar Galileons
Phys. Rev. D 106, 043522 (2022) [Crossref] -
Cao et al., Subsystem non-invertible symmetry operators and defects
SciPost Phys. 15, 155 (2023) [Crossref]