Areas and entropies in BFSS/gravity duality
Tarek Anous, Joanna L. Karczmarek, Eric Mintun, Mark Van Raamsdonk, Benson Way
SciPost Phys. 8, 057 (2020) · published 15 April 2020
- doi: 10.21468/SciPostPhys.8.4.057
- Submissions/Reports
Abstract
The BFSS matrix model provides an example of gauge-theory / gravity duality where the gauge theory is a model of ordinary quantum mechanics with no spatial subsystems. If there exists a general connection between areas and entropies in this model similar to the Ryu-Takayanagi formula, the entropies must be more general than the usual subsystem entanglement entropies. In this note, we first investigate the extremal surfaces in the geometries dual to the BFSS model at zero and finite temperature. We describe a method to associate regulated areas to these surfaces and calculate the areas explicitly for a family of surfaces preserving $SO(8)$ symmetry, both at zero and finite temperature. We then discuss possible entropic quantities in the matrix model that could be dual to these regulated areas.
Cited by 18
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 2 Tarek Anous,
- 1 Joanna Karczmarek,
- 1 Eric Mintun,
- 1 Mark Van Raamsdonk,
- 1 3 Benson Way
- 1 University of British Columbia [UBC]
- 2 Institute of Physics, University of Amsterdam [IoP, UvA]
- 3 Universitat de Barcelona / University of Barcelona [UB]
- European Research Council [ERC]
- Ministerie van Onderwijs, Cultuur en Wetenschap / Ministry of Education Culture and Science [OCW]
- Ministerio de Educación y Cultura - Spain (MEC) (through Organization: Ministerio de Educación y Cultura - España / Ministry of Education and Culture - Spain [MEC Spain])
- Conseil de Recherches en Sciences Naturelles et en Génie / Natural Sciences and Engineering Research Council [NSERC / CRSNG]
- Nederlandse Organisatie voor Wetenschappelijk Onderzoek / Netherlands Organisation for Scientific Research [NWO]
- Simons Foundation