The influence of spacetime curvature on quantum emission in optical analogues to gravity
Maxime J. Jacquet, Friedrich Koenig
SciPost Phys. Core 3, 005 (2020) · published 30 September 2020
- doi: 10.21468/SciPostPhysCore.3.1.005
- Submissions/Reports
Abstract
Quantum fluctuations on curved spacetimes cause the emission of pairs of particles from the quantum vacuum, as in the Hawking effect from black holes. We use an optical analogue to gravity to investigate the influence of the curvature on quantum emission. Due to dispersion, the spacetime curvature varies with frequency here. We analytically calculate for all frequencies the particle flux, correlations and entanglement. We find that horizons increase the flux with a characteristic spectral shape. The photon number correlations transition from multi- to two-mode, with close to maximal entanglement. The quantum state is a diagnostic for the mode conversion in laboratory tests of quantum field theory on curved spacetimes.
Cited by 14
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 2 Maxime Jacquet,
- 3 Friedrich Koenig
- 1 Universität Wien / University of Vienna
- 2 Sorbonne Université / Sorbonne University
- 3 University of St Andrews