Incorporating non-local anyonic statistics into a graph decomposition
Matthias Mühlhauser, Viktor Kott, Kai Phillip Schmidt
SciPost Phys. Core 7, 031 (2024) · published 30 May 2024
- doi: 10.21468/SciPostPhysCore.7.2.031
- Submissions/Reports
Abstract
In this work we describe how to systematically implement a full graph decomposition to set up a linked-cluster expansion for the topological phase of Kitaev's toric code in a field. This demands to include the non-local effects mediated by the mutual anyonic statistics of elementary charge and flux excitations. Technically, we describe how to consistently integrate such non-local effects into a hypergraph decomposition for single excitations. The approach is demonstrated for the ground-state energy and the elementary excitation energies of charges and fluxes in the perturbed topological phase.
Cited by 1
Authors / Affiliation: mappings to Contributors and Organizations
See all Organizations.- 1 Matthias Mühlhauser,
- 1 Viktor Kott,
- 1 Kai Phillip Schmidt
Funder for the research work leading to this publication