SciPost Phys. 10, 044 (2021) ·
published 22 February 2021
|
· pdf
We numerically study the possibility of many-body localization transition in a disordered quantum dimer model on the honeycomb lattice. By using the peculiar constraints of this model and state-of-the-art exact diagonalization and time evolution methods, we probe both eigenstates and dynamical properties and conclude on the existence of a localization transition, on the available time and length scales (system sizes of up to N=108 sites). We critically discuss these results and their implications.
SciPost Phys. 10, 019 (2021) ·
published 28 January 2021
|
· pdf
Within the tensor network framework, the (positive) thermal density operator can be approximated by a double layer of infinite Projected Entangled Pair Operator (iPEPO) coupled via ancilla degrees of freedom. To investigate the thermal properties of the spin-1/2 Heisenberg model on the square lattice, we introduce a family of fully spin-$SU(2)$ and lattice-$C_{4v}$ symmetric on-site tensors (of bond dimensions $D=4$ or $D=7$) and a plaquette-based Trotter-Suzuki decomposition of the imaginary-time evolution operator. A variational optimization is performed on the plaquettes, using a full (for $D=4$) or simple (for $D=7$) environment obtained from the single-site Corner Transfer Matrix Renormalization Group fixed point. The method is benchmarked by a comparison to quantum Monte Carlo in the thermodynamic limit. Although the iPEPO spin correlation length starts to deviate from the exact exponential growth for inverse-temperature $\beta \gtrsim 2$, the behavior of various observables turns out to be quite accurate once plotted w.r.t the inverse correlation length. We also find that a direct $T=0$ variational energy optimization provides results in full agreement with the $\beta\rightarrow\infty$ limit of finite-temperature data, hence validating the imaginary-time evolution procedure. Extension of the method to frustrated models is described and preliminary results are shown.
SciPost Phys. 6, 050 (2019) ·
published 29 April 2019
|
· pdf
We study the many-body localization (MBL) properties of a chain of interacting fermions subject to a quasiperiodic potential such that the non-interacting chain is always delocalized and displays multifractality. Contrary to naive expectations, adding interactions in this systems does not enhance delocalization, and a MBL transition is observed. Due to the local properties of the quasiperiodic potential, the MBL phase presents specific features, such as additional peaks in the density distribution. We furthermore investigate the fate of multifractality in the ergodic phase for low potential values. Our analysis is based on exact numerical studies of eigenstates and dynamical properties after a quench.
Francesca Pietracaprina, Nicolas Macé, David J. Luitz, Fabien Alet
SciPost Phys. 5, 045 (2018) ·
published 6 November 2018
|
· pdf
We provide a pedagogical review on the calculation of highly excited eigenstates of disordered interacting quantum systems which can undergo a many-body localization (MBL) transition, using shift-invert exact diagonalization. We also provide an example code at https://bitbucket.org/dluitz/sinvert_mbl/. Through a detailed analysis of the simulational parameters of the random field Heisenberg spin chain, we provide a practical guide on how to perform efficient computations. We present data for mid-spectrum eigenstates of spin chains of sizes up to $L=26$. This work is also geared towards readers with interest in efficiency of parallel sparse linear algebra techniques that will find a challenging application in the MBL problem.