Zachary L. Stevens-Hough, Matthew J. Davis, Lewis A. Williamson
SciPost Phys. 18, 134 (2025) ·
published 23 April 2025
|
· pdf
In the easy-plane phase, a ferromagnetic spin-1 Bose-Einstein condensate is magnetized in a plane transverse to the applied Zeeman field. This phase supports polar-core spin vortices (PCVs), which consist of phase windings of transverse magnetization. Here we show that spin-changing collisions cause a PCV to accelerate down density gradients in an inhomogeneous condensate. The dynamics is well-described by a simplified model adapted from scalar systems, which predicts the dependence of the dynamics on trap tightness and quadratic Zeeman energy. In a harmonic trap, a PCV accelerates radially to the condensate boundary, in stark contrast to the azimuthal motion of vortices in a scalar condensate. In a trap that has a local potential maximum at the centre, the PCV exhibits oscillations around the trap centre, which persist for a remarkably long time. The oscillations coincide with the emission and reabsorption of axial spin waves, which reflect off the condensate boundary.
SciPost Phys. 7, 029 (2019) ·
published 9 September 2019
|
· pdf
Coarsening dynamics, the canonical theory of phase ordering following a quench across a symmetry breaking phase transition, is thought to be driven by the annihilation of topological defects. Here we show that this understanding is incomplete. We simulate the dynamics of an isolated spin-1 condensate quenched into the easy-plane ferromagnetic phase and find that the mutual annihilation of spin vortices does not take the system to the equilibrium state. A nonequilibrium background of long wavelength spin waves remain at the Berezinskii-Kosterlitz-Thouless temperature, an order of magnitude hotter than the equilibrium temperature. The coarsening continues through a second much slower scale invariant process with a length scale that grows with time as $t^{1/3}$. This second regime of coarsening is associated with spin wave energy transport from low to high wavevectors, bringing about the the eventual equilibrium state. Because the relevant spin waves are noninteracting, the transport occurs through a dynamic coupling to other degrees of freedom of the system. The transport displays features of a spin wave energy cascade, providing a potential profitable connection with the emerging field of spin wave turbulence. Strongly coupling the system to a reservoir destroys the second regime of coarsening, allowing the system to thermalise following the annihilation of vortices.
Dr Williamson: "We thank the referee for their..."
in Submissions | report on Dynamics of Polar-Core Spin Vortices in Inhomogeneous Spin-1 Bose-Einstein Condensates