SciPost logo

Anomalous phase ordering of a quenched ferromagnetic superfluid

Lewis A. Williamson, P. Blair Blakie

SciPost Phys. 7, 029 (2019) · published 9 September 2019

Abstract

Coarsening dynamics, the canonical theory of phase ordering following a quench across a symmetry breaking phase transition, is thought to be driven by the annihilation of topological defects. Here we show that this understanding is incomplete. We simulate the dynamics of an isolated spin-1 condensate quenched into the easy-plane ferromagnetic phase and find that the mutual annihilation of spin vortices does not take the system to the equilibrium state. A nonequilibrium background of long wavelength spin waves remain at the Berezinskii-Kosterlitz-Thouless temperature, an order of magnitude hotter than the equilibrium temperature. The coarsening continues through a second much slower scale invariant process with a length scale that grows with time as $t^{1/3}$. This second regime of coarsening is associated with spin wave energy transport from low to high wavevectors, bringing about the the eventual equilibrium state. Because the relevant spin waves are noninteracting, the transport occurs through a dynamic coupling to other degrees of freedom of the system. The transport displays features of a spin wave energy cascade, providing a potential profitable connection with the emerging field of spin wave turbulence. Strongly coupling the system to a reservoir destroys the second regime of coarsening, allowing the system to thermalise following the annihilation of vortices.

Cited by 6

Crossref Cited-by

Ontology / Topics

See full Ontology or Topics database.

Ferromagnetic phases Superfluidity

Authors / Affiliations: mappings to Contributors and Organizations

See all Organizations.
Funders for the research work leading to this publication