SciPost Phys. 19, 025 (2025) ·
published 18 July 2025
|
· pdf
The 2d ferromagnetic Ising model was solved by Onsager on the square lattice in 1944, and an explicit expression of the free energy density $f$ is presently available for some other planar lattices. But determining exactly the critical temperature $T_c$ only requires a partial derivation of $f$. It has been performed on many lattices, including the 11 Archimedean lattices. In this article, we give general expressions of the free energy, energy, entropy and specific heat for planar lattices with a single type of non-crossing links. It is known that the specific heat exhibits a logarithmic singularity at $T_c$: $c_V(T)\sim -A\ln|1-T_c/T|$, in all the ferromagnetic and some antiferromagnetic cases. While the non-universal weight $A$ of the leading term has often been evaluated, this is not the case for the sub-leading order term $B$ such that $c_V(T)+A\ln|1-T_c/T|\sim B$, despite its significant impact on the $c_V(T)$ values in the vicinity of $T_c$, particularly important in experimental measurements. Explicit values of $T_c$, $A$, $B$ and other thermodynamic quantities are given for the Archimedean lattices and their duals for both ferromagnetic and antiferromagnetic interactions.
SciPost Phys. 17, 105 (2024) ·
published 7 October 2024
|
· pdf
This work presents an algorithm for calculating high temperature series expansions (HTSE) of Heisenberg spin models with spin $S=1/2$ in the thermodynamic limit. This algorithm accounts for the presence of a magnetic field. The paper begins with a comprehensive introduction to HTSE and then focuses on identifying the bottlenecks that limit the computation of higher order coefficients. HTSE calculations involve two key steps: graph enumeration on the lattice and trace calculations for each graph. The introduction of a non-zero magnetic field adds complexity to the expansion because previously irrelevant graphs must now be considered: bridged graphs. We present an efficient method to deduce the contribution of these graphs from the contribution of sub-graphs, that drastically reduces the time of calculation for the last order coefficient (in practice increasing by one the order of the series at almost no cost). Previous articles of the authors have utilized HTSE calculations based on this algorithm, but without providing detailed explanations. The complete algorithm is publicly available, as well as the series on many lattice and for various interactions.
Matías G. Gonzalez, Bernard Bernu, Laurent Pierre, Laura Messio
SciPost Phys. 12, 112 (2022) ·
published 30 March 2022
|
· pdf
The spin-$\frac12$ triangular lattice antiferromagnetic Heisenberg model has been for a long time the prototypical model of magnetic frustration. However, only very recently this model has been proposed to be realized in the Ba$_8$CoNb$_6$O$_{24}$ compound. The ground-state and thermodynamic properties are evaluated from a high-temperature series expansions interpolation method, called "entropy method", and compared to experiments. We find a ground-state energy $e_0 = -0.5445(2)$ in perfect agreement with exact diagonalization results. We also calculate the specific heat and entropy at all temperatures, finding a good agreement with the latest experiments, and evaluate which further interactions could improve the comparison. We explore the spatially anisotropic triangular lattice and provide evidence that supports the existence of a gapped spin liquid between the square and triangular lattices.
Submissions
Submissions for which this Contributor is identified as an author: