SciPost Phys. 14, 138 (2023) ·
published 31 May 2023
|
· pdf
We consider the dynamics of the non-Hermitian Su-Schrieffer-Heeger model arising as the no-click limit of a continuously monitored free fermion chain where particles and holes are measured on two sublattices. The model has $\mathcal{PT}$-symmetry, which we show to spontaneously break as a function of the strength of measurement backaction, resulting in a spectral transition where quasiparticles acquire a finite lifetime in patches of the Brillouin zone. We compute the entanglement entropy's dynamics in the thermodynamic limit and demonstrate an entanglement transition between volume-law and area-law scaling, which we characterize analytically. Interestingly we show that the entanglement transition and the $\mathcal{PT}$-symmetry breaking do not coincide, the former occurring when the entire decay spectrum of the quasiparticle becomes gapped.
Xhek Turkeshi, Damien Barbier, Leticia F. Cugliandolo, Marco Schirò, Marco Tarzia
SciPost Phys. 12, 189 (2022) ·
published 9 June 2022
|
· pdf
We discuss and compare two recently proposed toy models for anomalous transport and Griffiths effects in random systems near the Many-Body Localization transitions: the random dephasing model, which adds thermal inclusions in an Anderson Insulator as local Markovian dephasing channels that heat up the system, and the random Gaussian Orthogonal Ensemble (GOE) approach which models them in terms of ensembles of random regular graphs. For these two settings we discuss and compare transport and dissipative properties and their statistics. We show that both types of dissipation lead to similar Griffiths-like phenomenology, with the GOE bath being less effective in thermalising the system due to its finite bandwidth. We then extend these models to the case of a quasi-periodic potential as described by the André-Aubry-Harper model coupled to random thermal inclusions, that we show to display, for large strength of the quasiperiodic potential, a similar phenomenology to the one of the purely random case. In particular, we show the emergence of subdiffusive transport and broad statistics of the local density of states, suggestive of Griffiths like effects arising from the interplay between quasiperiodic localization and random coupling to the baths.
SciPost Phys. Core 5, 023 (2022) ·
published 21 April 2022
|
· pdf
We explore the dynamical phases of unitary Clifford circuits with variable-range interactions, coupled to a monitoring environment. We investigate two classes of models, distinguished by the action of the unitary gates, which either are organized in clusters of finite-range two-body gates, or are pair-wise interactions randomly distributed throughout the system with a power-law distribution. We find the range of the interactions plays a key role in characterizing both phases and their measurement-induced transitions. For the cluster unitary gates we find a transition between a phase with volume-law scaling of the entanglement entropy and a phase with area-law entanglement entropy. Our results indicate that the universality class of the phase transition is compatible to that of short range hybrid Clifford circuits. Oppositely, in the case of power-law distributed gates, we find the universality class of the phase transition changes continuously with the parameter controlling the range of interactions. In particular, for intermediate values of the control parameter, we find a non-conformal critical line which separates a phase with volume-law scaling of the entanglement entropy from one with sub-extensive scaling. Within this region, we find the entanglement entropy and the logarithmic negativity present a cross-over from a phase with algebraic growth of entanglement with system size, and an area-law phase.
SciPost Phys. 8, 042 (2020) ·
published 16 March 2020
|
· pdf
Variational wave functions have been a successful tool to investigate the properties of quantum spin liquids. Finding their parent Hamiltonians is of primary interest for the experimental simulation of these strongly correlated phases, and for gathering additional insights on their stability. In this work, we systematically reconstruct approximate spin-chain parent Hamiltonians for Jastrow-Gutzwiller wave functions, which share several features with quantum spin liquid wave-functions in two dimensions. Firstly, we determine the different phases encoded in the parameter space through their correlation functions and entanglement content. Secondly, we apply a recently proposed entanglement-guided method to reconstruct parent Hamiltonians to these states, which constrains the search to operators describing relativistic low-energy field theories - as expected for deconfined phases of gauge theories relevant to quantum spin liquids. The quality of the results is discussed using different quantities and comparing to exactly known parent Hamiltonians at specific points in parameter space. Our findings provide guiding principles for experimental Hamiltonian engineering of this class of states.