SciPost Phys. 15, 002 (2023) ·
published 6 July 2023
|
· pdf
In this work we propose a way to promote the anomalous axial $U(1)$ transformations to exact non-invertible $U(1)$ symmetries. We discuss the procedure of coupling the non-invertible symmetry to a (dynamical or background) gauge field. We show that as part of the gauging procedure, certain constraints are imposed to make the gauging consistent. The constraints emerge naturally from the form of the non-invertible $U(1)$ conserved current. In the case of dynamical gauging, this results in new type of gauge theories we call non-invertible gauge theories: These are gauge theories with additional constraints that cancel the would-be gauge anomalies. By coupling to background gauge fields, we can discuss 't-Hooft anomalies of non-invertible symmetries. We show in an example that the matching conditions hold but they are realized in an unconventional way. Turning on non-trivial background for the non-invertible gauge field changes the vacuum even when the symmetry is not broken and the background is very weak. The anomalies are then matched by the appearance of solitons in the new vacuum.
SciPost Phys. 10, 138 (2021) ·
published 9 June 2021
|
· pdf
We further explore a recent proposal that the vector mesons in QCD have a special role as Chern-Simons fields on various QCD objects such as domain walls and the one flavored baryons. We compute contributions to domain wall theories and to the baryon current coming from a generalized Wess-Zumino term including vector mesons. The conditions that lead to the expected Chern-Simons terms and the correct spectrum of baryons, coincide with the conditions for vector meson dominance. This observation provides a theoretical explanation to the phenomenological principle of vector dominance, as well as an experimental evidence for the identification of vector mesons as the Chern-Simons fields. By deriving the Chern-Simons theories directly from an action, we obtain new results about QCD domain walls. One conclusion is the existence of a first order phase transition between domain walls as a function of the quarks' masses. We also discuss applications of our results to Seiberg duality between gluons and vector mesons and provide new evidence supporting the duality.
SciPost Phys. 9, 008 (2020) ·
published 20 July 2020
|
· pdf
We introduce a novel Skyrme-like conserved current in the effective theory of pions and vector mesons based on the idea of hidden local symmetry. The associated charge is equivalent to the skyrmion charge for any smooth configuration. In addition, there exist singular configurations that can be identified as N_f=1 baryons charged under the new symmetry. Under this identification, the vector mesons play the role of the Chern-Simons vector fields living on the quantum Hall droplet that forms the N_f=1 baryon. We propose that this current is the correct effective expression for the baryon current at low energies. This proposal gives a unified picture for the two types of baryons and allows them to continuously transform one to the other in a natural way. In addition, Chern-Simons dualities on the droplet can be interpreted as a result of Seiberg-like duality between gluons and vector mesons.
Dr Karasik: "Dear Nabil, Thank you very ..."
in Submissions | report on On anomalies and gauging of U(1) non-invertible symmetries in 4d QED