Chris Akers, Adam Levine, Geoff Penington, Elizabeth Wildenhain
SciPost Phys. 16, 144 (2024) ·
published 4 June 2024
|
· pdf
Following the work of [J. High Energy Phys. 04, 062 (2021)], we define a generally covariant max-entanglement wedge of a boundary region B, which we conjecture to be the bulk region reconstructible from B. We similarly define a covariant min-entanglement wedge, which we conjecture to be the bulk region that can influence the state on B. We prove that the min- and max-entanglement wedges obey various properties necessary for this conjecture, such as nesting, inclusion of the causal wedge, and a reduction to the usual quantum extremal surface prescription in the appropriate special cases. These proofs rely on one-shot versions of the (restricted) quantum focusing conjecture (QFC) that we conjecture to hold. We argue that these QFCs imply a one-shot generalized second law (GSL) and quantum Bousso bound. Moreover, in a particular semiclassical limit we prove this one-shot GSL directly using algebraic techniques. Finally, in order to derive our results, we extend both the frameworks of one-shot quantum Shannon theory and state-specific reconstruction to finite-dimensional von Neumann algebras, allowing nontrivial centers.
SciPost Phys. 12, 157 (2022) ·
published 12 May 2022
|
· pdf
We show that complementary state-specific reconstruction of logical (bulk) operators is equivalent to the existence of a quantum minimal surface prescription for physical (boundary) entropies. This significantly generalizes both sides of an equivalence previously shown by Harlow; in particular, we do not require the entanglement wedge to be the same for all states in the code space. In developing this theorem, we construct an emergent bulk geometry for general quantum codes, defining "areas" associated to arbitrary logical subsystems, and argue that this definition is "functionally unique." We also formalize a definition of bulk reconstruction that we call "state-specific product unitary" reconstruction. This definition captures the quantum error correction (QEC) properties present in holographic codes and has potential independent interest as a very broad generalization of QEC; it includes most traditional versions of QEC as special cases. Our results extend to approximate codes, and even to the "non-isometric codes" that seem to describe the interior of a black hole at late times.