SciPost Phys. 17, 052 (2024) ·
published 14 August 2024
|
· pdf
Floquet engineering is an important tool for realizing topologically nontrivial band structures for charge-neutral atoms in optical lattices. However, the preparation of a topological-band-insulator-type state of fermions, with one nontrivial quasi-energy band filled completely and the others empty, is challenging as a result of both driving induced heating as well as imperfect adiabatic state preparation (with the latter induced by the unavoidable gap closing when passing the topological transition). An alternative procedure that has been proposed is to prepare such states dissipatively, i.e. as a steady state that emerges when coupling the system to reservoirs. Here we discuss a concrete scheme that couples the system to a weakly interacting Bose condensate given by second atomic species acting as a heat bath. Our strategy relies on the engineering of the potential for the bath particles, so that they occupy weakly coupled tubes perpendicular to the two-dimensional system. Using Floquet-Born-Markov theory, we show that the resulting nonequilibrium steady state of the driven-dissipative system approximates a topological insulator. We even find indications for the approximate stabilization of an anomalous Floquet topological insulator, a state that is impossible to realize in equilibrium.
Ivan Morera Navarro, Christof Weitenberg, Klaus Sengstock, Eugene Demler
SciPost Phys. 16, 081 (2024) ·
published 20 March 2024
|
· pdf
Quantum simulations with ultracold fermions in triangular optical lattices have recently emerged as a new platform for studying magnetism in frustrated systems. Experimental realizations of the Fermi Hubbard model revealed striking contrast between magnetism in bipartite and triangular lattices. In bipartite lattices magnetism is strongest at half filling, and doped charge carriers tend to suppress magnetic correlations. In triangular-type lattices for large U/t and t>0, antiferromagnetism (ferromagnetism) gets enhanced by doping away from n=1 with holes (doublons) because kinetic energy of dopants can be lowered through developing magnetic correlations, corresponding to formation of magnetic polarons. Snapshots of many-body states obtained with quantum gas microscopes demonstrated existence of magnetic polarons by revealing the magnetic correlations around dopants at temperatures that considerably exceed superexchange energy scale. In this paper we discuss theoretically that additional insight into properties of magnetic polarons in triangular lattices can be achieved using spectroscopic experiments with ultracold atoms. We consider starting from a spin polarized state with small hole doping and applying a two-photon Raman photoexcitation, which transfers atoms into a different spin state. We show that such magnon injection spectra exhibit a separate peak corresponding to formation of a bound state between a hole and a magnon. This polaron peak is separated from the simple magnon spectrum by energy proportional to single particle tunneling and can be easily resolved with currently available experimental techniques. For some momentum transfer there is an additional peak corresponding to photoexciting a bound state between two holes and a magnon. We point out that in two component Bose mixtures in triangular lattices one can also create dynamical magnetic polarons, with one hole and one magnon forming a repulsive bound state.