SciPost Phys. 12, 053 (2022) ·
published 4 February 2022
|
· pdf
We propose that doped Weyl semimetals with {time-reversal and certain crystalline symmetries} are natural candidates to realize higher-order topological superconductors, which exhibit a fully gapped bulk while the surface hosts robust gapless chiral hinge states. We show that in such a doped Weyl semimetal, a featureless finite-range attractive interaction favors a $p+ip$ pairing symmetry. By analyzing its topological properties, we identify such a chiral pairing state as a higher-order topological superconductor, which depending on the existence of a four-fold rotoinversion symmetry, is either intrinsic, {meaning that the corresponding hinge states can only be removed by closing the bulk gap, rather than modifying the surface states}, or extrinsic. We achieve this understanding via various methods recently developed for higher-order topology, including Wannier representability, Wannier spectrum, and defect classification approaches. For the four-fold rotoinversion symmetric case, we provide a complete classification of the higher-order topological superconductors. We show that such second-order topological superconductors exhibit chiral hinge modes that are robust in the absence of interaction effects but can be eliminated at the cost of introducing surface topological order.
SciPost Phys. 11, 086 (2021) ·
published 2 November 2021
|
· pdf
We propose a platform for braiding Majorana non-Abelian anyons based on a heterostructure between a $d$-wave high-$T_c$ superconductor and a quantum spin-Hall insulator. It has been recently shown that such a setup for a quantum spin-Hall insulator leads to a pair of Majorana zero modes at each corner of the sample, and thus can be regarded as a higher-order topological superconductor. We show that upon applying a Zeeman field in the region, these Majorana modes split in space and can be manipulated for braiding processes by tuning the field and pairing phase. We show that such a setup can achieve full braiding, exchanging, and arbitrary phase gates (including the $\pi/8$ magic gates) of the Majorana zero modes, all of which are robust and protected by symmetries. Our analysis naturally includes interaction effects and can be generalized to cases with fractional bulk excitations. As many of the ingredients of our proposed platform have been realized in recent experiments, our results provide a new route toward universal topological quantum computation.