António T. Costa, João C. G. Henriques, Joaquín Fernández-Rossier
SciPost Phys. 18, 125 (2025) ·
published 11 April 2025
|
· pdf
Altermagnets are a new class of magnetic materials with zero net magnetization (like antiferromagnets) but spin-split electronic bands (like ferromagnets) over a fraction of reciprocal space. As in antiferromagnets, magnons in altermagnets come in two flavours, that either add one or remove one unit of spin to the $S=0$ ground state. However, in altermagnets these two magnon modes are non-degenerate along some directions in reciprocal space. Here we show that the lifetime of altermagnetic magnons, due to Landau damping caused by coupling to Stoner modes, has a very strong dependence on both flavour and direction. Strikingly, coupling to Stoner modes leads to a complete suppression of magnon propagation along selected spatial directions. This giant anisotropy will impact electronic, spin, and energy transport properties and may be exploited in spintronic applications.
Jan Girovsky, Jose L. Lado, Floris E. Kalff, Eleonora Fahrenfort, Lucas J. J. M. Peters, Joaquín Fernández-Rossier, Alexander F. Otte
SciPost Phys. 2, 020 (2017) ·
published 14 June 2017
|
· pdf
The interaction of electrons with a periodic potential of atoms in crystalline solids gives rise to band structure. The band structure of existing materials can be measured by photoemission spectroscopy and accurately understood in terms of the tight-binding model, however not many experimental approaches exist that allow to tailor artificial crystal lattices using a bottom-up approach. The ability to engineer and study atomically crafted designer materials by scanning tunnelling microscopy and spectroscopy (STM/STS) helps to understand the emergence of material properties. Here, we use atom manipulation of individual vacancies in a chlorine monolayer on Cu(100) to construct one- and two-dimensional structures of various densities and sizes. Local STS measurements reveal the emergence of quasiparticle bands, evidenced by standing Bloch waves, with tuneable dispersion. The experimental data are understood in terms of a tight-binding model combined with an additional broadening term that allows an estimation of the coupling to the underlying substrate.