SciPost Phys. 15, 208 (2023) ·
published 27 November 2023
|
· pdf
In recent years, artificial neural networks (ANNs) have become an increasingly popular tool for studying problems in quantum theory, and in particular entanglement theory. In this work, we analyse to what extent ANNs can accurately predict the geometric measure of entanglement of symmetric multiqubit states using only a limited number of Wehrl moments (moments of the Husimi function of the state) as input, which represents partial information about the state. We consider both pure and mixed quantum states. We compare the results we obtain by training ANNs with the informed use of convergence acceleration methods. We find that even some of the most powerful convergence acceleration algorithms do not compete with ANNs when given the same input data, provided that enough data is available to train these ANNs. We also provide an experimental protocol for measuring Wehrl moments, which is state-independent. More generally, this work opens up perspectives for the estimation of entanglement measures and other SU(2)-invariant quantities, such as the Wehrl entropy, in a way that is more accessible in experiments than by means of full state tomography.
SciPost Phys. 15, 120 (2023) ·
published 28 September 2023
|
· pdf
We study the maximum entanglement that can be produced by a global unitary transformation for systems of two and three qubits constrained to the fully symmetric states. This restriction to the symmetric subspace appears naturally in the context of bosonic or collective spin systems. We also study the symmetric states that remain separable after any global unitary transformation, called symmetric absolutely separable (SAS) states, or absolutely classical for spin states. The results for the two-qubit system are deduced analytically. In particular, we determine the maximal radius of a ball of SAS states around the maximally mixed state in the symmetric sector, and the minimal radius of a ball that contains the set of SAS states. As an application of our results, we also analyse the temperature dependence of the maximum entanglement that can be obtained from the thermal state of a spin-1 system with a spin-squeezing Hamiltonian. For the symmetric three-qubit case, our results are mostly numerical, and we conjecture a 3-parameter family of states that achieves the maximum negativity in the unitary orbit of any mixed state. In addition, we derive upper bounds, apparently tight, on the radii of balls containing only/all SAS states.
Prof. Martin: "Firstly, we would like to than..."
in Submissions | report on Estimation of the geometric measure of entanglement with Wehrl Moments through Artificial Neural Networks