SciPost Phys. 10, 045 (2021) ·
published 22 February 2021
|
· pdf
We describe an efficient numerical method for simulating the dynamics and steady states of collective spin systems in the presence of dephasing and decay. The method is based on the Schwinger boson representation of spin operators and uses an extension of the truncated Wigner approximation to map the exact open system dynamics onto stochastic differential equations for the corresponding phase space distribution. This approach is most effective in the limit of very large spin quantum numbers, where exact numerical simulations and other approximation methods are no longer applicable. We benchmark this numerical technique for known superradiant decay and spin-squeezing processes and illustrate its application for the simulation of non-equilibrium phase transitions in dissipative spin lattice models.
Julian Huber, Peter Kirton, Stefan Rotter, Peter Rabl
SciPost Phys. 9, 052 (2020) ·
published 19 October 2020
|
· pdf
The effect of PT-symmetry breaking in coupled systems with balanced gain and loss has recently attracted considerable attention and has been demonstrated in various photonic, electrical and mechanical systems in the classical regime. Here we generalize the definition of PT symmetry to finite-dimensional open quantum systems, which are described by a Markovian master equation. Specifically, we show that the invariance of this master equation under a certain symmetry transformation implies the existence of stationary states with preserved and broken parity symmetry. As the dimension of the Hilbert space grows, the transition between these two limiting phases becomes increasingly sharp and the classically expected PT-symmetry breaking transition is recovered. This quantum-to-classical correspondence allows us to establish a common theoretical framework to identify and accurately describe PT-symmetry breaking effects in a large variety of physical systems, operated both in the classical and quantum regimes.
Submissions
Submissions for which this Contributor is identified as an author: