Francesco Camilli, Pierluigi Contucci, Emanuele Mingione
SciPost Phys. 12, 125 (2022) ·
published 11 April 2022
|
· pdf
The Wigner spiked model in a mismatched setting is studied with the finite temperature Statistical Mechanics approach through its representation as a Sherrington-Kirkpatrick model with added Mattis interaction. The exact solution of the model with Ising spins is rigorously proved to be given by a variational principle on two order parameters, the Parisi overlap distribution and the Mattis magnetization. The latter is identified by an ordinary variational principle and turns out to concentrate in the thermodynamic limit. The solution leads to the computation of the Mean Square Error of the mismatched reconstruction. The Gaussian signal distribution case is investigated and the corresponding phase diagram is identified.
SciPost Phys. 10, 113 (2021) ·
published 26 May 2021
|
· pdf
We develop further the study of a system in contact with a multibath having different temperatures at widely separated timescales. We consider those systems that do not thermalize in finite times when in contact with an ordinary bath but may do so in contact with a multibath. Thermodynamic integration is possible, thus allowing one to recover the stationary distribution on the basis of measurements performed in a `multi-reversible' transformation. We show that following such a protocol the system is at each step described by a generalization of the Boltzmann-Gibbs distribution, that has been studied in the past. Guerra's bound interpolation scheme for spin-glasses is closely related to this: by translating it into a dynamical setting, we show how it may actually be implemented in practice. The phase diagram plane of temperature vs "number of replicas", long studied in spin-glasses, in our approach becomes simply that of the two temperatures the system is in contact with. We suggest that this representation may be used to directly compare phenomenological and mean-field inspired models.Finally, we show how an approximate out of equilibrium probability distribution may be inferred experimentally on the basis of measurements along an almost reversible transformation.