SciPost Phys. Core 8, 018 (2025) ·
published 10 February 2025
|
· pdf
We study the entanglement properties in non-equilibrium quantum systems with the $SU(1,1)$ structure. Through Möbius transformation, we map the dynamics of these systems following a sudden quench or a periodic drive onto three distinct trajectories on the Poincaré disc, corresponding the heating, non-heating, and a phase boundary describing these non-equilibrium quantum states. We consider two experimentally feasible systems where their quantum dynamics exhibit the $SU(1,1)$ structure: the quench dynamics of the Bose-Einstein condensates and the periodically driven coupled oscillators. In both cases, the heating, non-heating phases, and their boundary manifest through distinct signatures in the phonon population where exponential, oscillatory, and linear growths classify these phases. Similarly, the entanglement entropy and negativity also exhibit distinct behaviors (linearly, oscillatory, and logarithmic growths) characterizing these phases, respectively. Notibly, for the periodically driven coupled oscillators, the non-equilibrium properties are characterized by two sets of $SU(1,1)$ generators. The corresponding two sets of the trajectories on two Poincaré discs lead to a more complex phase diagram. We identify two distinct phases within the heating region discernible solely by the growth rate of the entanglement entropy, where a discontinuity is observed when varying the parameters across the phase boundary within in heating region. This discontinuity is not observed in the phonon population.
SciPost Phys. Core 6, 062 (2023) ·
published 12 September 2023
|
· pdf
We demonstrate three types of transformations that establish connections between Hermitian and non-Hermitian quantum systems at criticality, which can be described by conformal field theories (CFTs). For the transformation preserving both the energy and the entanglement spectra, the corresponding central charges obtained from the logarithmic scaling of the entanglement entropy are identical for both Hermitian and non-Hermitian systems. The second transformation, while preserving the energy spectrum, does not perserve the entanglement spectrum. This leads to different entanglement entropy scalings and results in different central charges for the two types of systems. We demonstrate this transformation using the dilation method applied to the free fermion case. Through this method, we show that a non-Hermitian system with central charge $c = -4$ can be mapped to a Hermitian system with central charge $c = 2$. Lastly, we investigate the Galois conjugation in the Fibonacci model with the parameter $\phi \to - 1/\phi$, in which the transformation does not preserve both energy and entanglement spectra. We demonstrate the Fibonacci model and its Galois conjugation relate the tricritical Ising model/3-state Potts model and the Lee-Yang model with negative central charges from the scaling property of the entanglement entropy.
SciPost Phys. 12, 194 (2022) ·
published 13 June 2022
|
· pdf
Quantum entanglement is one essential element to characterize many-body quantum systems. However, the entanglement measures are mostly discussed in Hermitian systems. Here, we propose a natural extension of entanglement and R\'enyi entropies to non-Hermitian quantum systems. There have been other proposals for the computation of these quantities, which are distinct from what is proposed in the current paper. We demonstrate the proposed entanglement quantities which are referred to as generic entanglement and R\'enyi entropies. These quantities capture the desired entanglement properties in non-Hermitian critical systems, where the low-energy properties are governed by the non-unitary conformal field theories (CFTs). We find excellent agreement between the numerical extrapolation of the negative central charges from the generic entanglement/R\'enyi entropy and the non-unitary CFT prediction. Furthermore, we apply the generic entanglement/R\'enyi entropy to symmetry-protected topological phases with non-Hermitian perturbations. We find the generic $n$-th R\'enyi entropy captures the expected entanglement property, whereas the traditional R\'enyi entropy can exhibit unnatural singularities due to its improper definition.
Prof. Chang: "We thank both reviewers for ca..."
in Submissions | report on Entanglement transitions in SU(1, 1) quantum dynamics: applications to Bose-Einstein condensates and periodically driven coupled oscillators