SciPost Phys. 16, 132 (2024) ·
published 24 May 2024
|
· pdf
Deep generative models complement Markov-chain-Monte-Carlo methods for efficiently sampling from high-dimensional distributions. Among these methods, explicit generators, such as Normalising Flows (NFs), in combination with the Metropolis Hastings algorithm have been extensively applied to get unbiased samples from target distributions. We systematically study central problems in conditional NFs, such as high variance, mode collapse and data efficiency. We propose adversarial training for NFs to ameliorate these problems. Experiments are conducted with low-dimensional synthetic datasets and XY spin models in two spatial dimensions.
SciPost Phys. Core 5, 052 (2022) ·
published 2 December 2022
|
· pdf
In lattice field theory, Monte Carlo simulation algorithms get highly affected by critical slowing down in the critical region, where autocorrelation time increases rapidly. Hence the cost of generation of lattice configurations near the critical region increases sharply. In this paper, we use a Conditional Generative Adversarial Network (C-GAN) for sampling lattice configurations. We train the C-GAN on the dataset consisting of Hybrid Monte Carlo (HMC) samples in regions away from the critical region, i.e., in the regions where the HMC simulation cost is not so high. Then we use the trained C-GAN model to generate independent samples in the critical region. We perform both interpolation and extrapolation to the critical region. Thus, the overall computational cost is reduced. We test our approach for Gross-Neveu model in 1+1 dimension. We find that the observable distributions obtained from the proposed C-GAN model match with those obtained from HMC simulations, while circumventing the problem of critical slowing down.
SciPost Phys. 11, 043 (2021) ·
published 30 August 2021
|
· pdf
In this work, we study generative adversarial networks (GANs) as a tool to learn the distribution of spin configurations and to generate samples, conditioned on external tuning parameters or other quantities associated with individual configurations. For concreteness, we focus on two examples of conditional variables---the temperature of the system and the energy of the samples. We show that temperature-conditioned models can not only be used to generate samples across thermal phase transitions, but also be employed as unsupervised indicators of transitions. To this end, we introduce a GAN-fidelity measure that captures the model’s susceptibility to external changes of parameters. The proposed energy-conditioned models are integrated with Monte Carlo simulations to perform over-relaxation steps, which break the Markov chain and reduce auto-correlations. We propose ways of efficiently representing the physical states in our network architectures, e.g., by exploiting symmetries, and to minimize the correlations between generated samples. A detailed evaluation, using the two-dimensional XY model as an example, shows that these incorporations bring in considerable improvements over standard machine-learning approaches. We further study the performance of our architectures when no training data is provided near the critical region.
Prof. Arora: "> Thanks to the reviewer for c..."
in Submissions | report on AdvNF: Reducing Mode Collapse in Conditional Normalising Flows using Adversarial Learning