SciPost Phys. 15, 087 (2023) ·
published 11 September 2023
|
· pdf
We investigate the quantum-critical behavior between the rung-singlet phase with hidden string order and the Néel phase with broken SU(2)-symmetry in quantum spin ladders with algebraically decaying unfrustrated long-range Heisenberg interactions. To this end, we determine high-order series expansions of energies and observables in the thermodynamic limit about the isolated rung-dimer limit. This is achieved by extending the method of perturbative continuous unitary transformations (pCUT) to long-range Heisenberg interactions and to the calculation of generic observables. The quantum-critical breakdown of the rung-singlet phase then allows us to determine the critical phase transition line and the entire set of critical exponents as a function of the decay exponent of the long-range interaction. We demonstrate long-range mean-field behavior as well as a non-trivial regime of continuously varying critical exponents implying the absence of deconfined criticality contrary to a recent suggestion in the literature.
A. Langheld, J. A. Koziol, P. Adelhardt, S. C. Kapfer, K. P. Schmidt
SciPost Phys. 13, 088 (2022) ·
published 10 October 2022
|
· pdf
The hyperscaling relation and standard finite-size scaling (FSS) are known to break down above the upper critical dimension due to dangerous irrelevant variables. We establish a coherent formalism for FSS at quantum phase transitions above the upper critical dimension following the recently introduced Q-FSS formalism for thermal phase transitions. Contrary to long-standing belief, the correlation sector is affected by dangerous irrelevant variables. The presented formalism recovers a generalized hyperscaling relation and FSS form. Using this new FSS formalism, we determine the full set of critical exponents for the long-range transverse-field Ising chain in all criticality regimes ranging from the nearest-neighbor to the long-range mean field regime. For the same model, we also explicitly confirm the effect of dangerous irrelevant variables on the characteristic length scale.
Mr Adelhardt: "We thank the referee for his/h..."
in Submissions | report on Continuously varying critical exponents in long-range quantum spin ladders