SciPost Phys. Lect. Notes 4 (2018) ·
published 27 September 2018
|
· pdf
Free fermion systems enjoy a privileged place in physics. With their simple structure they can explain a variety of effects, ranging from insulating and metallic behaviours to superconductivity and the integer quantum Hall effect. Interactions, e.g. in the form of Coulomb repulsion, can dramatically alter this picture by giving rise to emerging physics that may not resemble free fermions. Examples of such phenomena include high-temperature superconductivity, fractional quantum Hall effect, Kondo effect and quantum spin liquids. The non-perturbative behaviour of such systems remains a major obstacle to their theoretical understanding that could unlock further technological applications. Here, we present a pedagogical review of "interaction distance" [Nat. Commun. 8, 14926 (2017)] -- a systematic method that quantifies the effect interactions can have on the energy spectrum and on the quantum correlations of generic many-body systems. In particular, the interaction distance is a diagnostic tool that identifies the emergent physics of interacting systems. We illustrate this method on the simple example of a one-dimensional Fermi-Hubbard dimer.
SciPost Phys. 3, 021 (2017) ·
published 9 September 2017
|
· pdf
This review presents an entry-level introduction to topological quantum computation -- quantum computing with anyons. We introduce anyons at the system-independent level of anyon models and discuss the key concepts of protected fusion spaces and statistical quantum evolutions for encoding and processing quantum information. Both the encoding and the processing are inherently resilient against errors due to their topological nature, thus promising to overcome one of the main obstacles for the realisation of quantum computers. We outline the general steps of topological quantum computation, as well as discuss various challenges faced it. We also review the literature on condensed matter systems where anyons can emerge. Finally, the appearance of anyons and employing them for quantum computation is demonstrated in the context of a simple microscopic model -- the topological superconducting nanowire -- that describes the low-energy physics of several experimentally relevant settings. This model supports localised Majorana zero modes that are the simplest and the experimentally most tractable types of anyons that are needed to perform topological quantum computation.