A Short Introduction to Topological Quantum Computation
Ville Lahtinen, Jiannis K. Pachos
SciPost Phys. 3, 021 (2017) · published 9 September 2017
- doi: 10.21468/SciPostPhys.3.3.021
- Submissions/Reports
Abstract
This review presents an entry-level introduction to topological quantum computation -- quantum computing with anyons. We introduce anyons at the system-independent level of anyon models and discuss the key concepts of protected fusion spaces and statistical quantum evolutions for encoding and processing quantum information. Both the encoding and the processing are inherently resilient against errors due to their topological nature, thus promising to overcome one of the main obstacles for the realisation of quantum computers. We outline the general steps of topological quantum computation, as well as discuss various challenges faced it. We also review the literature on condensed matter systems where anyons can emerge. Finally, the appearance of anyons and employing them for quantum computation is demonstrated in the context of a simple microscopic model -- the topological superconducting nanowire -- that describes the low-energy physics of several experimentally relevant settings. This model supports localised Majorana zero modes that are the simplest and the experimentally most tractable types of anyons that are needed to perform topological quantum computation.
TY - JOUR
PB - SciPost Foundation
DO - 10.21468/SciPostPhys.3.3.021
TI - A Short Introduction to Topological Quantum Computation
PY - 2017/09/09
UR - https://scipost.org/SciPostPhys.3.3.021
JF - SciPost Physics
JA - SciPost Phys.
VL - 3
IS - 3
SP - 021
A1 - Lahtinen, Ville
AU - Pachos, Jiannis
AB - This review presents an entry-level introduction to topological quantum computation -- quantum computing with anyons. We introduce anyons at the system-independent level of anyon models and discuss the key concepts of protected fusion spaces and statistical quantum evolutions for encoding and processing quantum information. Both the encoding and the processing are inherently resilient against errors due to their topological nature, thus promising to overcome one of the main obstacles for the realisation of quantum computers. We outline the general steps of topological quantum computation, as well as discuss various challenges faced it. We also review the literature on condensed matter systems where anyons can emerge. Finally, the appearance of anyons and employing them for quantum computation is demonstrated in the context of a simple microscopic model -- the topological superconducting nanowire -- that describes the low-energy physics of several experimentally relevant settings. This model supports localised Majorana zero modes that are the simplest and the experimentally most tractable types of anyons that are needed to perform topological quantum computation.
ER -
@Article{10.21468/SciPostPhys.3.3.021,
title={{A Short Introduction to Topological Quantum Computation}},
author={Ville Lahtinen and Jiannis K. Pachos},
journal={SciPost Phys.},
volume={3},
pages={021},
year={2017},
publisher={SciPost},
doi={10.21468/SciPostPhys.3.3.021},
url={https://scipost.org/10.21468/SciPostPhys.3.3.021},
}
Cited by 159
-
Génetay Johansen et al., Fibonacci Anyons Versus Majorana Fermions: A Monte Carlo Approach to the Compilation of Braid Circuits in
SU(2)k
Anyon Models
PRX Quantum 2, 010334 (2021) [Crossref] -
Génetay Johansen et al., Topological quantum computation using analog gravitational holonomy and time dilation
SciPost Phys. Core 6, 005 (2023) [Crossref] -
Bomantara, Generalized Majorana edge modes in a number-conserving periodically driven
p
-wave superconductor
Phys. Rev. B 108, 245153 (2023) [Crossref] -
Génetay Johansen et al., Prime number factorization using a spinor Bose–Einstein condensate-inspired topological quantum computer
Quantum Inf Process 21, 31 (2022) [Crossref] -
Fu et al., Low-temperature environments for quantum computation and quantum simulation*
Chinese Phys. B 30, 020702 (2021) [Crossref] -
Martín,
, 11 (2019) [Crossref] -
Sanno et al., Ab initio
simulation of non-Abelian braiding statistics in topological superconductors
Phys. Rev. B 103, 054504 (2021) [Crossref] -
Banerjee et al., Excitations in the field-induced quantum spin liquid state of α-RuCl3
npj Quant Mater 3, 8 (2018) [Crossref] -
Orts et al., Optimal fault-tolerant quantum comparators for image binarization
J Supercomput 77, 8433 (2021) [Crossref] -
Marra, Majorana nanowires for topological quantum computation
132, 231101 (2022) [Crossref] -
Zahiri Abyaneh et al., Current density of Majorana bound states
Physics Letters A 453, 128475 128475 (2022) [Crossref] -
Abdeldaim et al., One-dimensional quantum magnetism in the
S=12
Mo(V) system
KMoOP2O7
Phys. Rev. B 107, 014415 (2023) [Crossref] -
Çalikyilmaz et al., Opportunities for Quantum Acceleration of Databases: Optimization of Queries and Transaction Schedules
Proc. VLDB Endow. 16, 2344 (2023) [Crossref] -
Livanas et al., Majorana Zero Modes in Ferromagnetic Wires without Spin-Orbit Coupling
Condensed Matter 6, 44 (2021) [Crossref] -
Bomantara et al., Measurement-only quantum computation with Floquet Majorana corner modes
Phys. Rev. B 101, 085401 (2020) [Crossref] -
Mascot et al., Many-Body Majorana Braiding without an Exponential Hilbert Space
Phys. Rev. Lett. 131, 176601 (2023) [Crossref] -
Bandyopadhyay et al., Dynamical preparation of a topological state and out-of-equilibrium bulk-boundary correspondence in a Su-Schrieffer-Heeger chain under periodic driving
Phys. Rev. B 100, 144302 (2019) [Crossref] -
Amoroso, Preliminary study for developing instantaneous quantum computing algorithms (IQCA)
J. Phys.: Conf. Ser. 1251, 012005 (2019) [Crossref] -
Hilgenkamp, Josephson Memories
J Supercond Nov Magn 34, 1621 (2021) [Crossref] -
Hennighausen et al., Twistronics: a turning point in 2D quantum materials
Electron. Struct. 3, 014004 (2021) [Crossref] -
Nunziante et al., Topological Phase Diagram of an Interacting Kitaev Chain: Mean Field versus DMRG Study
Condensed Matter 9, 20 (2024) [Crossref] -
Piattini et al., Quantum Software Engineering: Practical Challenges
Int. J. Soft. Eng. Knowl. Eng., 1 (2024) [Crossref] -
Tews et al., Nuclear Forces for Precision Nuclear Physics: A Collection of Perspectives
Few-Body Syst 63, 67 (2022) [Crossref] -
He et al., Non-abelian statistics of Majorana modes and the applications to topological quantum computation
Acta Phys. Sin. 69, 110302 (2020) [Crossref] -
Zheng et al., Controlling the RKKY interaction and heat transport in a Kitaev spin liquid via
Z2
flux walls
Phys. Rev. B 104, 064437 (2021) [Crossref] -
Woods et al., Zero-energy pinning of topologically trivial bound states in multiband semiconductor-superconductor nanowires
Phys. Rev. B 100, 125407 (2019) [Crossref] -
Bespalov, Majorana edge states in Kitaev chains of the BDI symmetry class
SciPost Phys. Core 6, 080 (2023) [Crossref] -
Bandyopadhyay et al., Dynamical generation of Majorana edge correlations in a ramped Kitaev chain coupled to nonthermal dissipative channels
Phys. Rev. B 101, 104307 (2020) [Crossref] -
Wu et al., Double-frequency Aharonov-Bohm effect and non-Abelian braiding properties of Jackiw-Rebbi zero-mode
7, 572 (2020) [Crossref] -
Reutter et al., Shaded tangles for the design and verification of quantum circuits
Proc. R. Soc. A. 475, 20180338 (2019) [Crossref] -
Dai et al., Experimental Observation and Spin Texture of Dirac Node Arcs in Tetradymite Topological Metals
Phys. Rev. Lett. 126, 196407 (2021) [Crossref] -
Janoschek, A magnetic field boost for superconductors
Nat. Phys. 15, 1211 (2019) [Crossref] -
Samos Sáenz de Buruaga et al., Entanglement in noncritical inhomogeneous quantum chains
Phys. Rev. B 104, 195147 (2021) [Crossref] -
Rouco et al., Vortex Lattice Instabilities in YBa2Cu3O7-x Nanowires
Materials 11, 211 (2018) [Crossref] -
Quade et al., Controlling the real-time dynamics of a spin coupled to the helical edge states of the Kane-Mele model
Phys. Rev. B 105, 035406 (2022) [Crossref] -
Li et al., Magnon-polaron driven thermal Hall effect in a Heisenberg-Kitaev antiferromagnet
Phys. Rev. B 108, L140402 (2023) [Crossref] -
Smith et al., Intrinsic sign problems in topological quantum field theories
Phys. Rev. Research 2, 033515 (2020) [Crossref] -
Schuray et al., Transport signatures of Majorana bound states in superconducting hybrid structures
Eur. Phys. J. Spec. Top. 229, 593 (2020) [Crossref] -
Barsanti et al., Rotationally invariant isospinning baby-skyrmions dressed by fermions
J. High Energ. Phys. 2023, 76 (2023) [Crossref] -
Timoshuk et al., Quantum Information Transmission with Topological Edge States
J Low Temp Phys, (2024) [Crossref] -
Lesser et al., Majorana zero modes induced by superconducting phase bias
J. Phys. D: Appl. Phys. 55, 164001 (2022) [Crossref] -
Lundholm,
, 450 (2024) [Crossref] -
Sobko et al., Corrections to thermodynamics of the system of magnetically charged anyons
45, 880 (2019) [Crossref] -
Frombach et al., Tunable effective length of fractional Josephson junctions
J. Phys.: Condens. Matter 34, 164005 (2022) [Crossref] -
Liao et al., Graph-state representation of the toric code
Phys. Rev. A 104, 012432 (2021) [Crossref] -
Blanco de Paz et al., Energy density as a probe of band representations in photonic crystals
J. Phys.: Condens. Matter 34, 314002 (2022) [Crossref] -
Davids et al.,
, 1 (2021) [Crossref] -
Siddiqi, Engineering high-coherence superconducting qubits
Nat Rev Mater 6, 875 (2021) [Crossref] -
Bringewatt et al., Randomized measurement protocols for lattice gauge theories
Quantum 8, 1300 1300 (2024) [Crossref] -
Şahin et al., Three-Qutrit Topological SWAP Logic Gate for ISK (<i>I</i> = 1, <i>S</i> = 1, <i>K</i> = 1) Spin System
JAMP 05, 2320 (2017) [Crossref] -
Senekane et al.,
674, 205 (2020) [Crossref] -
Bomantara, Time-induced second-order topological superconductors
Phys. Rev. Research 2, 033495 (2020) [Crossref] -
Bespalov, Tuning the topological state of a helical atom chain via a Josephson phase
Phys. Rev. B 106, 134503 (2022) [Crossref] -
Long et al., Edge theories for anyon condensation phase transitions
Phys. Rev. B 109, 075140 (2024) [Crossref] -
Wang et al., Hydrodynamics of interacting spinons in the magnetized spin-
12
chain with a uniform Dzyaloshinskii-Moriya interaction
Phys. Rev. B 105, 184429 (2022) [Crossref] -
Frey et al.,
, 291 (2019) [Crossref] -
Pinske et al., Highly degenerate photonic waveguide structures for holonomic computation
Phys. Rev. A 101, 062314 (2020) [Crossref] -
Bandyopadhyay et al., Dissipative preparation of many-body Floquet Chern insulators
Phys. Rev. B 102, 184302 (2020) [Crossref] -
Marra et al., 1D Majorana Goldstinos and partial supersymmetry breaking in quantum wires
Commun Phys 5, 149 (2022) [Crossref] -
K. J. et al., Distinguishing phases via non-Markovian dynamics of entanglement in topological quantum codes under parallel magnetic field
Phys. Rev. A 105, 052421 (2022) [Crossref] -
Bloch et al., Non-equilibrium Bose–Einstein condensation in photonic systems
Nat Rev Phys 4, 470 (2022) [Crossref] -
Raii et al., Scalable quantum control and non-Abelian anyon creation in the Kitaev honeycomb model
Phys. Rev. A 106, 062401 (2022) [Crossref] -
Ren et al., Topological quantum computation on a chiral Kondo chain
Phys. Rev. B 109, 075145 (2024) [Crossref] -
Erdmanis et al., Weyl disks: Theoretical prediction
Phys. Rev. B 98, 241105 (2018) [Crossref] -
Smith et al., Simulating quantum many-body dynamics on a current digital quantum computer
npj Quantum Inf 5, 106 (2019) [Crossref] -
Minissale et al., Sequencing one-dimensional Majorana materials for topological quantum computing
J. Phys. Mater. 7, 031001 (2024) [Crossref] -
Cayao, Emergent pair symmetries in systems with poor man's Majorana modes
Phys. Rev. B 110, 125408 (2024) [Crossref] -
Powell, Emergent particles and gauge fields in quantum matter
Contemporary Physics 61, 96 (2020) [Crossref] -
Xie et al., Progress of superconducting nanofibers via electrospinning
J. Phys.: Condens. Matter 34, 043002 (2022) [Crossref] -
Schuray et al., Signatures of the Majorana spin in electrical transport through a Majorana nanowire
Phys. Rev. B 102, 045303 (2020) [Crossref] -
Gidney, Halving the cost of quantum addition
Quantum 2, 74 74 (2018) [Crossref] -
Lesser et al., Phase-induced topological superconductivity in a planar heterostructure
Proc. Natl. Acad. Sci. U.S.A. 118, e2107377118 (2021) [Crossref] -
Seoane Souto,
, 129 (2020) [Crossref] -
Holmes,
, 1 (2021) [Crossref] -
Luo et al., Global quantum phase diagram and non-Abelian chiral spin liquid in a spin-
32
square-lattice antiferromagnet
Phys. Rev. B 108, 035130 (2023) [Crossref] -
de Lima Marquezino et al.,
, 7 (2019) [Crossref] -
Tanaka et al., Theory of Majorana Zero Modes in Unconventional Superconductors
2024, 08C105 (2024) [Crossref] -
Turyansky et al., Inertial geometric quantum logic gates
Phys. Rev. Applied 21, 054033 (2024) [Crossref] -
Cooke et al., Investigation of Floquet engineered non-Abelian geometric phase for holonomic quantum computing
Phys. Rev. Research 6, 013057 (2024) [Crossref] -
Bomantara et al., Simulation of Non-Abelian Braiding in Majorana Time Crystals
Phys. Rev. Lett. 120, 230405 (2018) [Crossref] -
Bandyopadhyay et al., Unitary preparation of many-body Chern insulators: Adiabatic bulk-boundary correspondence
Phys. Rev. B 102, 094301 (2020) [Crossref] -
Méndez-Córdoba et al., From edge to bulk: Cavity-induced displacement of topological nonlocal qubits
Phys. Rev. B 107, 125104 (2023) [Crossref] -
Sobko, Зв’язок параметрів другого віріального коефіцієнта неабелевих еніонів з двопараметричними дробовими статистиками
Ukr. J. Phys. 66, 595 (2021) [Crossref] -
Jezequel et al., Mode-shell correspondence, a unifying phase space theory in topological physics - Part I: Chiral number of zero-modes
SciPost Phys. 17, 060 (2024) [Crossref] -
Ghimire et al., Anisotropic multiband superconductivity in
2M−WS2
probed by controlled disorder
Phys. Rev. Research 6, 013124 (2024) [Crossref] -
Stephen et al., Nonlocal Finite-Depth Circuits for Constructing Symmetry-Protected Topological States and Quantum Cellular Automata
PRX Quantum 5, 010304 (2024) [Crossref] -
Jiang et al., Research progress of material, physics, and device of topological superconductors for quantum computing
Acta Phys. Sin. 71, 160302 (2022) [Crossref] -
Hegde et al., A topological Josephson junction platform for creating, manipulating, and braiding Majorana bound states
Annals of Physics 423, 168326 168326 (2020) [Crossref] -
Aceves Rodriguez et al., Magnetic exchange interactions at the proximity of a superconductor
J. Phys.: Condens. Matter 36, 295801 (2024) [Crossref] -
Goraus et al., Experimental and theoretical studies of Ti2MnGa
Materials Characterization 154, 248 (2019) [Crossref] -
Woods et al., Subband occupation in semiconductor-superconductor nanowires
Phys. Rev. B 101, 045405 (2020) [Crossref] -
Kim, Circulator function in a Josephson junction circuit and braiding of Majorana zero modes
Sci Rep 11, 1826 (2021) [Crossref] -
Bomantara, Z4
parafermion
±π/2
modes in an interacting periodically driven superconducting chain
Phys. Rev. B 104, L121410 (2021) [Crossref] -
Narożniak et al., Quantum gates for Majoranas zero modes in topological superconductors in one-dimensional geometry
Phys. Rev. B 103, 205429 (2021) [Crossref] -
Kempkes et al., Compact localized boundary states in a quasi-1D electronic diamond-necklace chain
Quantum Front 2, 1 (2023) [Crossref] -
Sebastian et al.,
686, 91 (2023) [Crossref] -
Amundsen et al., Colloquium
: Spin-orbit effects in superconducting hybrid structures
Rev. Mod. Phys. 96, 021003 (2024) [Crossref] -
Pandey et al., Nontrivial fusion of Majorana zero modes in interacting quantum-dot arrays
Phys. Rev. Research 6, 033314 (2024) [Crossref] -
Hong et al., Unitary symmetry-protected non-Abelian statistics of Majorana modes
Phys. Rev. B 105, 024503 (2022) [Crossref] -
Liu et al., Defect bulk-boundary correspondence of topological skyrmion phases of matter
Phys. Rev. B 107, 235109 (2023) [Crossref] -
Morgenstern et al., Strong and Weak 3D Topological Insulators Probed by Surface Science Methods
Physica Status Solidi (b) 258, 2000060 (2021) [Crossref] -
Lin et al., Non-Abelian operation through scattering between chiral Dirac edge modes
Phys. Rev. B 105, 205428 (2022) [Crossref] -
Woods et al., Realizing Majorana Kramers pairs in two-channel InAs-Al nanowires with highly misaligned electric fields
Phys. Rev. B 108, 155142 (2023) [Crossref] -
Blasi et al., Topological Josephson junctions in the integer quantum Hall regime
Phys. Rev. Research 5, 033142 (2023) [Crossref] -
García-Ripoll, Specialty Grand Challenge: Quantum engineering
Front. Quantum. Sci. Technol. 1, 1029525 (2022) [Crossref] -
Simula,
, 279 (2024) [Crossref] -
Houssein et al., Machine learning in the quantum realm: The state-of-the-art, challenges, and future vision
Expert Systems with Applications 194, 116512 116512 (2022) [Crossref] -
Finzgar et al.,
, 226 (2022) [Crossref] -
Alchieri et al., An introduction to quantum machine learning: from quantum logic to quantum deep learning
Quantum Mach. Intell. 3, 28 (2021) [Crossref] -
Amaro et al., Scalable characterization of localizable entanglement in noisy topological quantum codes
New J. Phys. 22, 053038 (2020) [Crossref] -
Strečka, A bird’s eye view of a quantum entanglement: From spooky action at a distance towards cornerstone of novel quantum technologies
Physica B: Condensed Matter 653, 414483 414483 (2023) [Crossref] -
Wu et al., Non-Abelian Braiding in Spin Superconductors Utilizing the Aharonov-Casher Effect
Phys. Rev. Lett. 128, 106804 (2022) [Crossref] -
Dejpasand et al., Research Trends in Quantum Computers by Focusing on Qubits as Their Building Blocks
Quantum Reports 5, 597 (2023) [Crossref] -
Payá et al., Phenomenology of Majorana zero modes in full-shell hybrid nanowires
Phys. Rev. B 109, 115428 (2024) [Crossref] -
Ilyas et al., Ternary logic design in topological quantum computing
J. Phys. A: Math. Theor. 55, 305302 (2022) [Crossref] -
Cao et al., Quantum Teleportation Error Suppression Algorithm Based on Convolutional Neural Networks and Quantum Topological Semion Codes
Quantum Engineering 2022, 1 (2022) [Crossref] -
Wu et al., Non-Abelian Braiding of Dirac Fermionic Modes Using Topological Corner States in Higher-Order Topological Insulator
Phys. Rev. Lett. 125, 036801 (2020) [Crossref] -
Lau et al., Quantum walk of two anyons across a statistical boundary
Phys. Rev. Research 4, L012007 (2022) [Crossref] -
Wu et al., Exact zero modes in a quantum compass chain under inhomogeneous transverse fields
Phys. Rev. B 100, 085130 (2019) [Crossref] -
Crane et al., Optically controlled entangling gates in randomly doped silicon
Phys. Rev. B 100, 064201 (2019) [Crossref] -
Palumbo, Non-Abelian Tensor Berry Connections in Multiband Topological Systems
Phys. Rev. Lett. 126, 246801 (2021) [Crossref] -
Zhou et al., Fusion of Majorana bound states with mini-gate control in two-dimensional systems
Nat Commun 13, 1738 (2022) [Crossref] -
Kim et al., Statistically Valid Variational Bayes Algorithm for Ising Model Parameter Estimation
Journal of Computational and Graphical Statistics 33, 75 (2024) [Crossref] -
Hwang, Anyon condensation and confinement transition in a Kitaev spin liquid bilayer
Phys. Rev. B 109, 134412 (2024) [Crossref] -
Brown et al., Universal fault-tolerant measurement-based quantum computation
Phys. Rev. Research 2, 033305 (2020) [Crossref] -
Tounsi et al., Optimized topological quantum compilation of three-qubit controlled gates in the Fibonacci anyon model: A controlled-injection approach
Phys. Rev. A 110, 012603 (2024) [Crossref] -
Gálisová et al., Spontaneous magnetic order and spin and charge entanglement of a coupled spin-electron model on a decorated square lattice composed from trigonal bipyramids
Phys. Rev. B 104, 104420 (2021) [Crossref] -
Aceves Rodriguez et al., Superconductivity in Nb: Impact of Temperature, Dimensionality and Cooper-Pairing
Nanomaterials 14, 254 (2024) [Crossref] -
Cade et al., Complexity of Supersymmetric Systems and the Cohomology Problem
Quantum 8, 1325 1325 (2024) [Crossref] -
Sood et al., Quantum computing: Impact on energy efficiency and sustainability
Expert Systems with Applications 255, 124401 124401 (2024) [Crossref] -
Gong et al., Modulation of radiative heat transfer by higher-order topological phonon polaritons
Phys. Rev. B 110, 115419 (2024) [Crossref] -
Bomantara et al., Quantum computation via Floquet topological edge modes
Phys. Rev. B 98, 165421 (2018) [Crossref] -
Hassija et al., Present landscape of quantum computing
IET Quantum Communication 1, 42 (2020) [Crossref] -
Duwell,
, (2021) [Crossref] -
Khatibi Moqadam et al., Boundary-induced coherence in the staggered quantum walk on different topologies
Phys. Rev. A 98, 012123 (2018) [Crossref] -
Pinske et al., Geometrically robust linear optics from non-Abelian geometric phases
Phys. Rev. Research 4, 023086 (2022) [Crossref] -
Lahtinen et al., Quantum criticality in many-body parafermion chains
SciPost Phys. Core 4, 014 (2021) [Crossref] -
Bomantara et al., Combating quasiparticle poisoning with multiple Majorana fermions in a periodically-driven quantum wire
J. Phys.: Condens. Matter 32, 435301 (2020) [Crossref] -
Jana et al., Topological quantum computation on supersymmetric spin chains
J. High Energ. Phys. 2023, 251 (2023) [Crossref] -
Monroe et al., Phase jumps in Josephson junctions with time-dependent spin–orbit coupling
125, 012601 (2024) [Crossref] -
Tsintzis et al., Majorana Qubits and Non-Abelian Physics in Quantum Dot–Based Minimal Kitaev Chains
PRX Quantum 5, 010323 (2024) [Crossref] -
He et al., Entanglement and pseudo entanglement dynamics versus fusion in CFT
J. High Energ. Phys. 2024, 177 (2024) [Crossref] -
Tan et al., High-fidelity and long-distance entangled-state transfer with Floquet topological edge modes
Phys. Rev. A 102, 022608 (2020) [Crossref] -
Davids et al.,
, 423 (2022) [Crossref] -
Ma et al., Simple analog of the black-hole information paradox in quantum Hall interfaces
Phys. Rev. B 105, 045306 (2022) [Crossref] -
McDonnell et al., Subradiant edge states in an atom chain with waveguide-mediated hopping
Quantum 6, 805 805 (2022) [Crossref] -
Woods et al., Enhanced topological protection in planar quasi-one-dimensional channels with periodically modulated width
Phys. Rev. B 101, 195435 (2020) [Crossref] -
Huang et al., Emulating Quantum Teleportation of a Majorana Zero Mode Qubit
Phys. Rev. Lett. 126, 090502 (2021) [Crossref] -
Polash et al., Topological quantum matter to topological phase conversion: Fundamentals, materials, physical systems for phase conversions, and device applications
Materials Science and Engineering: R: Reports 145, 100620 100620 (2021) [Crossref] -
Jäck et al., Detecting and distinguishing Majorana zero modes with the scanning tunnelling microscope
Nat Rev Phys 3, 541 (2021) [Crossref] -
Fellous-Asiani et al., Optimizing Resource Efficiencies for Scalable Full-Stack Quantum Computers
PRX Quantum 4, 040319 (2023) [Crossref] -
Fan et al., Experimental quantum simulation of a topologically protected Hadamard gate via braiding Fibonacci anyons
The Innovation 4, 100480 100480 (2023) [Crossref] -
Wu et al., Recent progress on non-Abelian anyons: from Majorana zero modes to topological Dirac fermionic modes
Sci. China Phys. Mech. Astron. 66, 267004 (2023) [Crossref] -
Huxford et al., Excitations in the higher-lattice gauge theory model for topological phases. I. Overview
Phys. Rev. B 108, 245132 (2023) [Crossref] -
Marra et al., Majorana/Andreev crossover and the fate of the topological phase transition in inhomogeneous nanowires
J. Phys.: Condens. Matter 34, 124001 (2022) [Crossref] -
Shukla et al., A Newly Developed Dispersive Interaction Approach, DFT-D3, to the Three-Dimensional Topological Host Material Sb<sub>2</sub>Te<sub>3</sub>
MSF 1065, 195 (2022) [Crossref] -
Cayao et al., Enhancing the Josephson diode effect with Majorana bound states
Phys. Rev. B 109, L081405 (2024) [Crossref] -
Cao et al., Quantum Chemistry in the Age of Quantum Computing
Chem. Rev. 119, 10856 (2019) [Crossref] -
Schmidt, Bosonization for fermions and parafermions
Eur. Phys. J. Spec. Top. 229, 621 (2020) [Crossref]
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- Dahlem Research School, Freie Universität Berlin (through Organization: Freie Universität Berlin / Freie Universität Berlin [FU Berlin])
- Engineering and Physical Sciences Research Council [EPSRC]