SciPost Phys. Proc. 12, 065 (2023) ·
published 5 July 2023
|
· pdf
The upcoming Hyper-Kamiokande (HyperK) experiment is expected to detect the Diffuse Supernova Neutrino Background (DSNB). This requires to ponder all possible sources of background. Sub-GeV dark matter (DM) which annihilates into neutrinos is a potential background that has not been considered so far. We simulate DSNB and DM signals, as well as backgrounds in the HyperK detector. We find that DM-induced neutrinos could indeed alter the extraction of the correct values of the parameters of interest for DSNB physics. Since the DSNB is an isotropic signal, and DM originates primarily from the Galactic centre, we show that this effect could be alleviated with an on-off analysis.
SciPost Phys. Proc. 12, 057 (2023) ·
published 5 July 2023
|
· pdf
Compact stellar objects are promising cosmic laboratories to test the nature of dark matter (DM). DM captured by the strong gravitational field of these stellar remnants transfers kinetic energy to the star during the collision. This can have various effects such as anomalous heating of old compact stars. The proper calculation of the DM capture rate is key to derive bounds on DM interactions in any scenario involving DM accretion in a star. We improve former calculations, which rely on approximations, for both white dwarfs (WDs) and neutron stars (NSs). We account for the stellar structure, gravitational focusing, relativistic kinematics, Pauli blocking, realistic form factors, and strong interactions (NSs). Considering DM capture by scattering off either ions or degenerate electrons in WDs, we show that old WDs in DM-rich environments could probe the elusive sub-GeV mass regime for both DM-nucleon and DM-electron scattering. In NSs, DM can be captured via collisions with strongly interacting baryons or relativistic leptons. We project the NS sensitivity to DM-nucleon and DM-lepton scattering cross sections which greatly exceeds that of direct detection experiments, especially for low mass DM.