SciPost Phys. Core 8, 024 (2025) ·
published 18 February 2025
|
· pdf
Quantum spin liquids are exotic phases of quantum matter especially pertinent to many modern condensed matter systems. Dirac spin liquids (DSLs) are a class of gapless quantum spin liquids that do not have a quasi-particle description and are potentially realized in a wide variety of spin $1/2$ magnetic systems on $2d$ lattices. In particular, the DSL in square lattice spin-$1/2$ magnets is described at low energies by $(2+1)d$ quantum electrodynamics with $N_f=4$ flavors of massless Dirac fermions minimally coupled to an emergent $U(1)$ gauge field. The existence of a relevant, symmetry-allowed monopole perturbation renders the DSL on the square lattice intrinsically unstable. We argue that the DSL describes a stable continuous phase transition within the familiar Neel phase (or within the Valence Bond Solid (VBS) phase). In other words, the DSL is an "unnecessary" quantum critical point within a single phase of matter. Our result offers a novel view of the square lattice DSL in that the critical spin liquid can exist within either the Neel or VBS state itself, and does not require leaving these conventional states.
SciPost Phys. 15, 215 (2023) ·
published 29 November 2023
|
· pdf
We propose bi-critical and tri-critical theories between chiral spin liquid (CSL), topological superconductor (SC) and charge density wave (CDW) ordered Chern insulator with Chern number $C=2$ on square, triangular and Kagome lattices. The three CDW order parameters form a manifold of $S^2$ or $S^1$ depending on whether there is easy-plane anisotropy. The skyrmion defect of the CDW order carries physical charge $2e$ and its condensation leads to a topological superconductor. The CDW-SC transitions are in the same universality classes as the celebrated deconfined quantum critical points (DQCP) between Neel order and valence bond solid order on square lattice. Both SC and CDW order can be accessed from the CSL phase through a continuous phase transition. At the CSL-SC transition, there is still CDW order fluctuations although CDW is absent in both sides. We propose three different theories for the CSL-SC transition (and CSL to easy-plane CDW transition): a $U(1)$ theory with two bosons, a $U(1)$ theory with two Dirac fermions, and an $SU(2)$ theory with two bosons. Our construction offers a derivation of the duality between these three theories as well as a promising physical realization. The $SU(2)$ theory offers a unified framework for a series of fixed points with explicit $SO(5), O(4)$ or $SO(3)× O(2)$ symmetry. There is also a transparent duality transformation mapping SC order to easy-plane CDW order. The CSL-SC-CDW tri-critical points are invariant under this duality mapping and have an enlarged $SO(5)$ or $O(4)$ symmetry. The DQCPs between CDW and SC inherit the enlarged symmetry, emergent anomaly, and self-duality from the tri-critical point. Our analysis unifies the well-studied DQCP between symmetry breaking phases into a larger framework where they are proximate to a topologically ordered phase. Experimentally the theory demonstrates the possibility of a rich phase diagram and criticality through closing the Mott gap of a quantum spin liquid with projective symmetry group.
Dr Song: "We thanks referee 1 for her/hi..."
in Submissions | report on Deconfined criticalities and dualities between chiral spin liquid, topological superconductor and charge density wave Chern insulator