SciPost Phys. 16, 107 (2024) ·
published 22 April 2024
|
· pdf
In the half-filled one-orbital Hubbard model on a square lattice, we study the effect of next-nearest neighbor hopping on the single-particle spectral function at finite temperature using an exact-diagonalization + Monte-Carlo based approach to the simulation process. We find that the pseudogap-like dip, existing in the density of states in between the Néel temperature $T_N$ and a relatively higher temperature scale $T^*$, is accompanied with a significant asymmetry in the hole- and particle-excitation energy along the high-symmetry directions as well as along the normal-state Fermi surface. On moving from ($\pi/2, \pi/2$) toward $(\pi, 0)$ along the normal state Fermi surface, the hole-excitation energy increases, a behavior remarkably similar to what is observed in the $d$-wave state and pseudogap phase of high-$T_c$ cuprates, whereas the particle-excitation energy decreases. The quasiparticle peak height is the largest near ($\pi/2, \pi/2$) whereas it is the smallest near $(\pi, 0)$. These spectral features survive beyond $T_N$. The temperature window $T_N \lesssim T \lesssim T^*$ shrinks with an increase in the next-nearest neighbor hopping, which indicates that the next-nearest neighbor hopping may not be supportive to the pseudogap-like features.
Harun Al Rashid, Garima Goyal, Alireza Akbari, Dheeraj Kumar Singh
SciPost Phys. Core 6, 033 (2023) ·
published 24 April 2023
|
· pdf
We investigate the temperature dependence of quasiparticle interference in the high $T_c$-cuprates using an exact-diagonalization + Monte-Carlo based scheme to simulate the $d$-wave superconducting order parameter. The quasiparticle interference patterns have features largely resulting from the scattering vectors of the octet model at lower temperature. Our findings suggest that the features of quasiparticle interference in the pseudogap region of the phase diagram are also dominated by the set of scattering vectors belonging to the octet model because of the persisting antinodal gap beyond the superconducting transition $T_c$. However, beyond a temperature when the antinodal gap becomes very small, a set of scattering vectors different from those belonging to the octet model are responsible for the quasiparticle interference patterns. With a rise in temperature, the patterns are increasingly broadened.
Dr Singh: "We are thankful to the referee..."
in Submissions | report on Effect of next-nearest neighbor hopping on the single-particle excitations at finite temperature