Max Bramberger, Benjamin Bacq-Labreuil, Martin Grundner, Silke Biermann, Ulrich Schollwöck, Sebastian Paeckel, Benjamin Lenz
SciPost Phys. 14, 010 (2023) ·
published 31 January 2023
|
· pdf
We investigate the tetragonal phase of the binary transition metal oxide CuO (t-CuO) within the context of cellular dynamical mean-field theory. Due to its strong antiferromagnetic correlations and simple structure, analysing the physics of t-CuO is of high interest as it may pave the way towards a more complete understanding of high-temperature superconductivity in hole-doped antiferromagnets. In this work we give a formal justification for the weak-coupling assumption that has previously been made for the interconnected sublattices within a single layer of t-CuO by studying the non-local self-energies of the system. We compute momentum-resolved spectral functions using a Matrix Product State (MPS)-based impurity solver directly on the real axis, which does not require any numerically ill-conditioned analytic continuation. The agreement with photoemission spectroscopy indicates that a single-band Hubbard model is sufficient to capture the material's low energy physics. We perform calculations on a range of different temperatures, finding two magnetic regimes, for which we identify the driving mechanism behind their respective insulating state. Finally, we show that in the hole-doped regime the sublattice structure of t-CuO has interesting consequences on the symmetry of the superconducting state.
SciPost Phys. 10, 058 (2021) ·
published 9 March 2021
|
· pdf
Quantum lattice models with large local Hilbert spaces emerge across various fields in quantum many-body physics. Problems such as the interplay between fermions and phonons, the BCS-BEC crossover of interacting bosons, or decoherence in quantum simulators have been extensively studied both theoretically and experimentally. In recent years, tensor network methods have become one of the most successful tools to treat such lattice systems numerically. Nevertheless, systems with large local Hilbert spaces remain challenging. Here, we introduce a mapping that allows to construct artificial $U(1)$ symmetries for any type of lattice model. Exploiting the generated symmetries, numerical expenses that are related to the local degrees of freedom decrease significantly. This allows for an efficient treatment of systems with large local dimensions. Further exploring this mapping, we reveal an intimate connection between the Schmidt values of the corresponding matrix\hyp product\hyp state representation and the single\hyp site reduced density matrix. Our findings motivate an intuitive physical picture of the truncations occurring in typical algorithms and we give bounds on the numerical complexity in comparison to standard methods that do not exploit such artificial symmetries. We demonstrate this new mapping, provide an implementation recipe for an existing code, and perform example calculations for the Holstein model at half filling. We studied systems with a very large number of lattice sites up to $L=501$ while accounting for $N_{\rm ph}=63$ phonons per site with high precision in the CDW phase.
Sebastian Paeckel, Thomas Köhler, Salvatore R. Manmana
SciPost Phys. 3, 035 (2017) ·
published 17 November 2017
|
· pdf
We present an algorithmic construction scheme for matrix-product-operator (MPO) representations of arbitrary $U(1)$-invariant operators whenever there is an expression of the local structure in terms of a finite-states machine (FSM). Given a set of local operators as building blocks, the method automatizes two major steps when constructing a $U(1)$-invariant MPO representation: (i) the bookkeeping of auxiliary bond-index shifts arising from the application of operators changing the local quantum numbers and (ii) the appearance of phase factors due to particular commutation rules. The automatization is achieved by post-processing the operator strings generated by the FSM. Consequently, MPO representations of various types of $U(1)$-invariant operators can be constructed generically in MPS algorithms reducing the necessity of expensive MPO arithmetics. This is demonstrated by generating arbitrary products of operators in terms of FSM, from which we obtain exact MPO representations for the variance of the Hamiltonian of a $S=1$ Heisenberg chain.
Dr Paeckel: "We thank the referee for her/h..."
in Submissions | report on Efficient and Flexible Approach to Simulate Low-Dimensional Quantum Lattice Models with Large Local Hilbert Spaces