Svenja Marten, Gunnar Bollmark, Thomas Köhler, Salvatore R. Manmana, Adrian Kantian
SciPost Phys. 15, 236 (2023) ·
published 12 December 2023
|
· pdf
We combine matrix-product-state (MPS) and mean-field (MF) methods to model the real-time evolution of a three-dimensional (3D) extended Hubbard system formed from one-dimensional (1D) chains arrayed in parallel with weak coupling in-between them. This approach allows us to treat much larger 3D systems of correlated fermions out-of-equilibrium over a much more extended real-time domain than previous numerical approaches. We deploy this technique to study the evolution of the system as its parameters are tuned from a charge-density wave phase into the superconducting regime, which allows us to investigate the formation of transient non-equilibrium superconductivity. In our ansatz, we use MPS solutions for chains as input for a self-consistent time-dependent MF scheme. In this way, the 3D problem is mapped onto an effective 1D Hamiltonian that allows us to use the MPS efficiently to perform the time evolution, and to measure the BCS order parameter as a function of time. Our results confirm previous findings for purely 1D systems that for such a scenario a transient superconducting state can occur.
Sebastian Paeckel, Thomas Köhler, Salvatore R. Manmana
SciPost Phys. 3, 035 (2017) ·
published 17 November 2017
|
· pdf
We present an algorithmic construction scheme for matrix-product-operator (MPO) representations of arbitrary $U(1)$-invariant operators whenever there is an expression of the local structure in terms of a finite-states machine (FSM). Given a set of local operators as building blocks, the method automatizes two major steps when constructing a $U(1)$-invariant MPO representation: (i) the bookkeeping of auxiliary bond-index shifts arising from the application of operators changing the local quantum numbers and (ii) the appearance of phase factors due to particular commutation rules. The automatization is achieved by post-processing the operator strings generated by the FSM. Consequently, MPO representations of various types of $U(1)$-invariant operators can be constructed generically in MPS algorithms reducing the necessity of expensive MPO arithmetics. This is demonstrated by generating arbitrary products of operators in terms of FSM, from which we obtain exact MPO representations for the variance of the Hamiltonian of a $S=1$ Heisenberg chain.